12 research outputs found

    Meta-analysis of multidecadal biodiversity trends in Europe

    Get PDF
    Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.peerReviewe

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de Economía, Industria y Competitividad—Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a Ciência e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    The faunal Ponto-Caspianization of central and western European waterways

    Get PDF
    As alien invasive species are a key driver of biodiversity loss, understanding patterns of rapidly changing global species compositions depends upon knowledge of invasive species population dynamics and trends at large scales. Within this context, the Ponto-Caspian region is among the most notable donor regions for aquatic invasive species in Europe. Using macroinvertebrate time series collected over 52 years (1968–2020) at 265 sites across 11 central and western European countries, we examined the occurrences, invasion rates, and abundances of freshwater Ponto-Caspian fauna. We examined whether: (i) successive Ponto-Caspian invasions follow a consistent pattern of composition pioneered by the same species, and (ii) Ponto-Caspian invasion accelerates subsequent invasion rates. In our dataset, Ponto-Caspian macroinvertebrates increased from two species in 1972 to 29 species in 2012. This trend was parallelled by a non-significant increasing trend in the abundances of Ponto-Caspian taxa. Trends in Ponto-Caspian invader richness increased significantly over time. We found a relatively uniform distribution of Ponto-Caspian macroinvertebrates across Europe without any relation to the distance to their native region. The Ponto-Caspian species that arrived first were often bivalves (46.5% of cases), particularly Dreissena polymorpha, followed secondarily by amphipods (83.8%; primarily Chelicorophium curvispinum and Dikerogammarus villosus). The time between consecutive invasions decreased significantly at our coarse regional scale, suggesting that previous alien establishments may facilitate invasions of subsequent taxa. Should alien species continue to translocate from the Ponto-Caspian region, our results suggest a high potential for their future invasion success highly connected central and western European waters. However, each species’ population may decline after an initial ‘boom’ phase or after the arrival of new invasive species, resulting in different alien species dominating over time

    Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions

    Get PDF
    The zebra mussel Dreissena polymorpha is one of the most successful, notorious, and detrimental aquatic invasive non-native species worldwide, having invaded Europe and North America while causing substantial ecological and socio-economic impacts. Here, we investigated the spatiotemporal trends in this species' invasion success using 178 macroinvertebrate abundance time series, containing 1451 records of D. polymorpha collected across nine European countries between 1972–2019. Using these raw (absolute) abundance data, we examined trends and drivers of occurrences and relative abundances of D. polymorpha within invaded communities. Meta-regression models revealed non-significant trends both at the European level and for the majority of the invaded countries, except for France (significant decreasing trend) and Hungary (marginally positive trend). At the European level, the number of D. polymorpha occurrences over time followed a flat-top bell-shaped distribution, with a steep increase between 1973–1989 followed by a plateau phase prior to significantly declining post-1998. Using a series of climatic and hydromorphological site-specific characteristics of invaded and uninvaded sites from two periods (1998–2002; 2011–2015), we found that native richness, non-native abundance, distance to the next barrier, and elevation were associated with the occurrence of D. polymorpha. We also found that higher native richness and lower latitude were related to lower relative abundances. Using Cohen's D as a measure of D. polymorpha impact, we found that biodiversity within the invaded sites was initially higher than in uninvaded ones, but then declined, suggesting differences in biodiversity trends across invaded and uninvaded sites. While our results emphasise the high invasion success of D. polymorpha, increasing stressors within the context of global change – particularly ongoing climate change – are likely to enhance invasion rates and the impact of D. polymorpha in the near future, exacerbated by the lack of timely and effective management actions

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss(1). Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity(2). Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity

    The faunal Ponto-Caspianization of central and western European waterways

    No full text
    As alien invasive species are a key driver of biodiversity loss, understanding patterns of rapidly changing global species compositions depends upon knowledge of invasive species population dynamics and trends at large scales. Within this context, the Ponto-Caspian region is among the most notable donor regions for aquatic invasive species in Europe. Using macroinvertebrate time series collected over 52 years (1968–2020) at 265 sites across 11 central and western European countries, we examined the occurrences, invasion rates, and abundances of freshwater Ponto-Caspian fauna. We examined whether: (i) successive Ponto-Caspian invasions follow a consistent pattern of composition pioneered by the same species, and (ii) Ponto-Caspian invasion accelerates subsequent invasion rates. In our dataset, Ponto-Caspian macroinvertebrates increased from two species in 1972 to 29 species in 2012. This trend was parallelled by a non-significant increasing trend in the abundances of Ponto-Caspian taxa. Trends in Ponto-Caspian invader richness increased significantly over time. We found a relatively uniform distribution of Ponto-Caspian macroinvertebrates across Europe without any relation to the distance to their native region. The Ponto-Caspian species that arrived first were often bivalves (46.5% of cases), particularly Dreissena polymorpha, followed secondarily by amphipods (83.8%; primarily Chelicorophium curvispinum and Dikerogammarus villosus). The time between consecutive invasions decreased significantly at our coarse regional scale, suggesting that previous alien establishments may facilitate invasions of subsequent taxa. Should alien species continue to translocate from the Ponto-Caspian region, our results suggest a high potential for their future invasion success highly connected central and western European waters. However, each species’ population may decline after an initial ‘boom’ phase or after the arrival of new invasive species, resulting in different alien species dominating over time

    Global patterns and controls of nutrient immobilization on decomposing cellulose in riverine ecosystems

    No full text
    Abstract Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature. Collectively, we demonstrated that exogenous nutrient supply and immobilization are critical control points for decomposition of organic matter

    Meta-analysis of multidecadal biodiversity trends in Europe

    No full text
    Abstract Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe

    Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems

    Get PDF
    International audienceMicrobes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low‐nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization arepoorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low‐nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, andwere strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature‐dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature. Collectively, we demonstrated that exogenous nutrient supply and immobilization are critical control points for decomposition of organic matter
    corecore