2 research outputs found

    Compound effect of EHD and surface roughness in pool boiling and CHF with R-123

    Get PDF
    This article is a post-print version of the fianl published article which may be accessed at the link below.Saturated pool boiling of R-123 at 1 bar, including the critical heat flux (CHF), was enhanced by modifying the surface characteristics and applying a high intensity electrostatic field, the latter termed electrohydrodynamic (and abbreviated EHD) enhancement. The heat flux was varied from very low values in the natural convection regime up to CHF. Experiments were performed with increasing and decreasing heat flux to study boiling hysteresis without and with EHD. Boiling occurred on the sand blasted surface of a cylindrical copper block with embedded electrical heating elements, with standardized surface parameter Pa = 3.5 μm. The electric field was generated by a potential of 5 kV to 25 kV, applied through a 40 mm diameter circular electrode of ss-304 wire mesh, aperture size 5.1 mm, located at distances of 5 - 60 mm from the surface, with most of the data obtained for 20 mm. The data for the rough surface were compared with earlier data for a smooth surface and indicated a significant increase in the heat transfer rates. EHD produced a further increase in the heat transfer rates, particularly at low heat flux values and near the CHF. Boiling hysteresis was reduced progressively by EHD and eliminated at high field strength.This work was supported by Government of Pakistan under a scholarship programme

    Measurement of the WW plus WZ cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum, and two jets with the ATLAS detector at root s=7 TeV

    No full text
    The production of a W boson decaying to ev or mu v in association with a W or Z boson decaying to two jets is studied using 4.6 fb(-1) of proton-proton collision data at root s = 7 TeV recorded with the ATLAS detector at the LHC. The combined WW + WZ cross section is measured with a significance of 3.4 sigma and is found to be 68 +/- 7 (stat.) +/- 19 (syst.) pb, in agreement with the Standard Model expectation of 61.1 +/- 2.2 pb. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model
    corecore