271 research outputs found

    Replication of Association between ADAM33 Polymorphisms and Psoriasis

    Get PDF
    Polymorphisms in ADAM33, the first gene identified in asthma by positional cloning, have been recently associated with psoriasis. No replication study of this association has been published so far. Data available in the French EGEA study (Epidemiological study on Genetics and Environment of Asthma, bronchial hyperresponsivensess and Atopy) give the opportunity to attempt to replicate the association between ADAM33 and psoriasis in 2002 individuals. Psoriasis (n = 150) has been assessed by questionnaire administered by an interviewer and a sub-sample of subjects with early-onset psoriasis (n = 74) has been identified based on the age of the subjects at time of interview (<40 years). Nine SNPs in ADAM33 and 11 SNPs in PSORS1 were genotyped. Association analysis was conducted by using two methods, GEE regression-based method and a likelihood-based method (LAMP program). The rs512625 SNP in ADAM33 was found associated with psoriasis at p = 0.01, the usual threshold required for replication (OR [95% CI] for heterozygotes compared to the reference group of homozygotes for the most frequent allele = 0.61 [0.42;0.89]). The rs628977 SNP, which was not in linkage disequilibrium with rs512625, was significantly associated with early-onset psoriasis (p = 0.01, OR [95% CI] for homozygotes for the minor allele compared to the reference group = 2.52 [1.31;4.86]). Adjustment for age, sex, asthma and a PSORS1 SNP associated with psoriasis in the EGEA data did not change the significance of these associations. This suggests independent effects of ADAM33 and PSORS1 on psoriasis. This is the first study that replicates an association between genetic variants in ADAM33 and psoriasis. Interestingly, the 2 ADAM33 SNPs associated with psoriasis in the present analysis were part of the 3-SNPs haplotypes showing the strongest associations in the initial study. The identification of a pleiotropic effect of ADAM33 on asthma and psoriasis may contribute to the understanding of these common immune-mediated diseases

    Effects of short-term treatment with atorvastatin in smokers with asthma - a randomized controlled trial

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; The immune modulating properties of statins may benefit smokers with asthma. We tested the hypothesis that short-term treatment with atorvastatin improves lung function or indices of asthma control in smokers with asthma.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; Seventy one smokers with mild to moderate asthma were recruited to a randomized double-blind parallel group trial comparing treatment with atorvastatin (40 mg per day) versus placebo for 4 weeks. After 4 weeks treatment inhaled beclometasone (400 ug per day) was added to both treatment arms for a further 4 weeks. The primary outcome was morning peak expiratory flow after 4 weeks treatment. Secondary outcome measures included indices of asthma control and airway inflammation.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; At 4 weeks, there was no improvement in the atorvastatin group compared to the placebo group in morning peak expiratory flow [-10.67 L/min, 95% CI -38.70 to 17.37, p=0.449], but there was an improvement with atorvastatin in asthma quality of life score [0.52, 95% CI 0.17 to 0.87 p=0.005]. There was no significant improvement with atorvastatin and inhaled beclometasone compared to inhaled beclometasone alone in outcome measures at 8 weeks.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Short-term treatment with atorvastatin does not alter lung function but may improve asthma quality of life in smokers with mild to moderate asthma. Clinicaltrials.gov identifier: NCT0046382

    Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium.

    Get PDF
    BACKGROUND: Genome-wide association studies have identified novel genetic associations for asthma, but without taking into account the role of active tobacco smoking. This study aimed to identify novel genes that interact with ever active tobacco smoking in adult onset asthma. METHODS: We performed a genome-wide interaction analysis in six studies participating in the GABRIEL consortium following two meta-analyses approaches based on 1) the overall interaction effect and 2) the genetic effect in subjects with and without smoking exposure. We performed a discovery meta-analysis including 4,057 subjects of European descent and replicated our findings in an independent cohort (LifeLines Cohort Study), including 12,475 subjects. RESULTS: First approach: 50 SNPs were selected based on an overall interaction effect at p<10-4. The most pronounced interaction effect was observed for rs9969775 on chromosome 9 (discovery meta-analysis: ORint = 0.50, p = 7.63*10-5, replication: ORint = 0.65, p = 0.02). Second approach: 35 SNPs were selected based on the overall genetic effect in exposed subjects (p <10-4). The most pronounced genetic effect was observed for rs5011804 on chromosome 12 (discovery meta-analysis ORint = 1.50, p = 1.21*10-4; replication: ORint = 1.40, p = 0.03). CONCLUSIONS: Using two genome-wide interaction approaches, we identified novel polymorphisms in non-annotated intergenic regions on chromosomes 9 and 12, that showed suggestive evidence for interaction with active tobacco smoking in the onset of adult asthma

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    The human early-life exposome (HELIX): project rationale and design

    Get PDF
    Background: Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure–health effect relationships. The “exposome” concept encompasses the totality of exposures from conception onward, complementing the genome. Objectives: The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the “early-life exposome.” Here we describe the general design of the project. Methods: In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother–child pairs, and biomarkers will be measured in a subset of 1,200 mother–child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure–response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. Conclusions: HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome

    Cigarette smoke exposure facilitates allergic sensitization in mice

    Get PDF
    BACKGROUND: Active and passive smoking are considered as risk factors for asthma development. The mechanisms involved are currently unexplained. OBJECTIVE: The aim of this study was to determine if cigarette smoke exposure could facilitate primary allergic sensitization. METHODS: BALB/c mice were exposed to aerosolized ovalbumin (OVA) combined with air or tobacco smoke (4 exposures/day) daily for three weeks. Serology, lung cytopathology, cytokine profiles in bronchoalveolar lavage fluid (BALF) and on mediastinal lymph node cultures as well as lung function tests were performed after the last exposure. The natural history and the immune memory of allergic sensitization were studied with in vivo recall experiments. RESULTS: Exposure to OVA induced a small increase in OVA-specific serum IgE as compared with exposure to PBS (P < 0.05), while no inflammatory reaction was observed in the airways. Exposure to cigarette smoke did not induce IgE, but was characterized by a small but significant neutrophilic inflammatory reaction. Combining OVA with cigarette smoke not only induced a significant increase in OVA-specific IgE but also a distinct eosinophil and goblet cell enriched airway inflammation albeit that airway hyperresponsiveness was not evidenced. FACS analysis showed in these mice increases in dendritic cells (DC) and CD4(+ )T-lymphocytes along with a marked increase in IL-5 measured in the supernatant of lymph node cell cultures. Immune memory experiments evidenced the transient nature of these phenomena. CONCLUSION: In this study we show that mainstream cigarette smoke temporary disrupts the normal lung homeostatic tolerance to innocuous inhaled allergens, thereby inducing primary allergic sensitization. This is characterized not only by the development of persistent IgE, but also by the emergence of an eosinophil rich pulmonary inflammatory reaction

    An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors

    Get PDF
    Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines

    Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis.

    Get PDF
    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO\u2082, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV\u2081) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 \u3bcg\ub7m(-3) increase in NO\u2082 exposure was associated with lower levels of FEV\u2081 (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 \u3bcg\ub7m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV\u2081 (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe

    In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts

    Get PDF
    [EN] BACKGROUND: In utero exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only. OBJECTIVE: To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex. METHODS: We included 3,007 mother-child pairs from eight European birth cohorts. Bisphenol concentrations were determined in maternal urine samples collected during pregnancy (1999-2010). Between 7 and 11years of age, current asthma and wheeze were assessed from questionnaires and lung function by spirometry. Wheezing patterns were constructed from questionnaires from early to mid-childhood. We performed adjusted random-effects meta-analysis on individual participant data. RESULTS: Exposure to BPA was prevalent with 90% of maternal samples containing concentrations above detection limits. BPF and BPS were found in 27% and 49% of samples. In utero exposure to BPA was associated with higher odds of current asthma (OR=1.13, 95% CI=1.01, 1.27) and wheeze (OR=1.14, 95% CI=1.01, 1.30) (p-interaction sex=0.01) among girls, but not with wheezing patterns nor lung function neither in overall nor among boys. We observed inconsistent associations of BPF and BPS with the respiratory outcomes assessed in overall and sex-stratified analyses. CONCLUSION: This study suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girls.The research leading to these results has received funding from Instituto de Salud Carlos III and European Union’s FEDER funds (CP16/00128 – the ENDOLUNG project, and PI17/01194 – the INMA-Ado-Respi Project), the European Community’s Seventh Framework Programme (FP7/2007–206) under grant agreement no 308,333 - the HELIX project –, and from the EC’s Horizon 2020 research and innovation programme under grant agreement No 874,583 – the ATHLETE project. Generation R: This study was funded by The Erasmus MC, Rotterdam, the Erasmus University Rotterdam and the Netherlands Organization for Health Research and Development. The project received funding from the European Union's Horizon 2020 research and innovation programme (LIFECYCLE, grant agreement No 733206, 2016; EUCAN-Connect grant agreement No 824989; ATHLETE, grant agreement No 874583). Dr. Vincent Jaddoe received a grant from the European Research Council (ERC-2014-CoG-648916). This study was supported by grant R01-ES022972 and R01-ES029779 from the National Institutes of Health, USA. The researchers are independent from the funders. The study sponsors had no role in the study design, data analysis, interpretation of data, or writing of this report. INMA Gipuzkoa: This study was funded by grants from Instituto de Salud Carlos III (FIS-PI13/02187 and FIS-PI18/01142 incl. FEDER funds), CIBERESP, Department of Health of the Basque Government (2015111065), and the Provincial Government of Gipuzkoa (DFG15/221) and annual agreements with the municipalities of the study area (Zumarraga, Urretxu, Legazpi, Azkoitia y Azpeitia y Beasain). INMA Sabadell: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds; PI12/01890 incl. FEDER funds; CP13/00054 incl. FEDER funds), CIBERESP, Generalitat de Catalunya-CIRIT 1999SGR 00241, Generalitat de Catalunya-AGAUR (2009 SGR 501, 2014 SGR 822), Fundació La marató de TV3 (090430), Spanish Ministry of Economy and Competitiveness (SAF2012-32991 incl. FEDER funds), Agence Nationale de Securite Sanitaire de l’Alimentation de l’Environnement et du Travail (1262C0010), European Commission (261357, 308333, 603,794 and 634453). Alicia Abellan holds a LifeCycle fellowship, funded from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733206. Maribel Casas holds a Miguel Servet fellowship (CP16/00128) funded by Instituto de Salud Carlos III and co-funded by European Social Fund “Investing in your future“. We acknowledge support from the Spanish Ministry of Science and Innovation through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (2018–000806-S), and support from the Generalitat de Catalunya through the CERCA Program. INMA Valencia: INMA Valencia was funded by Grants from UE (FP7-ENV-2011 cod 282,957 and HEALTH.2010.2.4.5–1), Spain: ISCIII (G03/176; FIS-FEDER: PI09/02647, PI11/01007, PI11/02591, PI11/02038, PI13/1944, PI13/2032, PI14/00891, PI14/01687, PI16/1288, PI17/00663, and PI19/1338; Miguel Servet-FEDER CP11/00178, CP15/00025, and CPII16/00051), Alicia Koplowitz Foundation, and Generalitat Valenciana: FISABIO (UGP 15–230, UGP-15–244, UGP-15–249, and AICO/2020/285). BiB: This report is independent research funded by the National Institute for Health Research Yorkshire and Humber ARC (NIHR200166) and BiB receives core infrastructure funding from the Wellcome Trust (WT101597MA). The views expressed in this publication are those of the author(s) and not necessarily those of the National Institute for Health Research or the Department of Health and Social Care. EDEN: The EDEN study was supported by Foundation for medical research (FRM), National Agency for Research (ANR), National Institute for Research in Public health (IRESP: TGIR cohorte santé 2008 program), French Ministry of Health (DGS), French Ministry of Research, INSERM Bone and Joint Diseases National Research (PRO-A), and Human Nutrition National Research Programs, Paris-Sud University, Nestlé, French National Institute for Population Health Surveillance (InVS), French National Institute for Health Education (INPES), the European Union FP7 programmes (FP7/2007–2013, HELIX, ESCAPE, ENRIECO, Medall projects), Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD)), French Agency for Environmental Health Safety (now ANSES), Mutuelle Générale de l’Education Nationale a complementary health insurance (MGEN), French national agency for food security, French-speaking association for the study of diabetes and metabolism (ALFEDIAM). MoBa: The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. RHEA: The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211,250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226,285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308,333 HELIX, H2020 LIFECYCLE, grant agreement No 733206, H2020 ATHLETE, grant agreement No 874583), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011–2014; “Rhea Plus”: Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012–15). Additional funding from NIEHS supported Dr Chatzi (R01ES030691, R01ES029944, R01ES030364, R21ES029681, R21ES028903, and P30ES007048)
    corecore