59 research outputs found

    Singularities and nonhyperbolic manifolds do not coincide

    Full text link
    We consider the billiard flow of elastically colliding hard balls on the flat ν\nu-torus (ν2\nu\ge 2), and prove that no singularity manifold can even locally coincide with a manifold describing future non-hyperbolicity of the trajectories. As a corollary, we obtain the ergodicity (actually the Bernoulli mixing property) of all such systems, i.e. the verification of the Boltzmann-Sinai Ergodic Hypothesis.Comment: Final version, to appear in Nonlinearit

    The McCoy-Wu Model in the Mean-field Approximation

    Full text link
    We consider a system with randomly layered ferromagnetic bonds (McCoy-Wu model) and study its critical properties in the frame of mean-field theory. In the low-temperature phase there is an average spontaneous magnetization in the system, which vanishes as a power law at the critical point with the critical exponents β3.6\beta \approx 3.6 and β14.1\beta_1 \approx 4.1 in the bulk and at the surface of the system, respectively. The singularity of the specific heat is characterized by an exponent α3.1\alpha \approx -3.1. The samples reduced critical temperature tc=TcavTct_c=T_c^{av}-T_c has a power law distribution P(tc)tcωP(t_c) \sim t_c^{\omega} and we show that the difference between the values of the critical exponents in the pure and in the random system is just ω3.1\omega \approx 3.1. Above the critical temperature the thermodynamic quantities behave analytically, thus the system does not exhibit Griffiths singularities.Comment: LaTeX file with iop macros, 13 pages, 7 eps figures, to appear in J. Phys.

    Describing the set of words generated by interval exchange transformation

    Full text link
    Let WW be an infinite word over finite alphabet AA. We get combinatorial criteria of existence of interval exchange transformations that generate the word W.Comment: 17 pages, this paper was submitted at scientific council of MSU, date: September 21, 200

    Common trends in the critical behavior of the Ising and directed walk models

    Full text link
    We consider layered two-dimensional Ising and directed walk models and show that the two problems are inherently related. The information about the zero-field thermodynamical properties of the Ising model is contained into the transfer matrix of the directed walk. For several hierarchical and aperiodic distributions of the couplings, critical exponents for the two problems are obtained exactly through renormalization.Comment: 4 pages, RevTeX file + 1 figure, epsf needed. To be published in PR

    Anomalous Diffusion in Aperiodic Environments

    Full text link
    We study the Brownian motion of a classical particle in one-dimensional inhomogeneous environments where the transition probabilities follow quasiperiodic or aperiodic distributions. Exploiting an exact correspondence with the transverse-field Ising model with inhomogeneous couplings we obtain many new analytical results for the random walk problem. In the absence of global bias the qualitative behavior of the diffusive motion of the particle and the corresponding persistence probability strongly depend on the fluctuation properties of the environment. In environments with bounded fluctuations the particle shows normal diffusive motion and the diffusion constant is simply related to the persistence probability. On the other hand in a medium with unbounded fluctuations the diffusion is ultra-slow, the displacement of the particle grows on logarithmic time scales. For the borderline situation with marginal fluctuations both the diffusion exponent and the persistence exponent are continuously varying functions of the aperiodicity. Extensions of the results to disordered media and to higher dimensions are also discussed.Comment: 11 pages, RevTe

    Transverse-field Ising spin chain with inhomogeneous disorder

    Full text link
    We consider the critical and off-critical properties at the boundary of the random transverse-field Ising spin chain when the distribution of the couplings and/or transverse fields, at a distance ll from the surface, deviates from its uniform bulk value by terms of order lκl^{-\kappa} with an amplitude AA. Exact results are obtained using a correspondence between the surface magnetization of the model and the surviving probability of a random walk with time-dependent absorbing boundary conditions. For slow enough decay, κ<1/2\kappa<1/2, the inhomogeneity is relevant: Either the surface stays ordered at the bulk critical point or the average surface magnetization displays an essential singularity, depending on the sign of AA. In the marginal situation, κ=1/2\kappa=1/2, the average surface magnetization decays as a power law with a continuously varying, AA-dependent, critical exponent which is obtained analytically. The behavior of the critical and off-critical autocorrelation functions as well as the scaling form of the probability distributions for the surface magnetization and the first gaps are determined through a phenomenological scaling theory. In the Griffiths phase, the properties of the Griffiths-McCoy singularities are not affected by the inhomogeneity. The various results are checked using numerical methods based on a mapping to free fermions.Comment: 11 pages (Revtex), 11 figure

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    Get PDF
    International audienceDifferentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascu-lar networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous , resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally , our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types

    Monotone factors of I.I.D. processes

    No full text
    corecore