10 research outputs found
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Stereotactic Radiation Therapy Combined With Immunotherapy Against Metastatic Melanoma: Long-Term Results of a Phase 1 Clinical Trial
Purpose: To determine the maximum tolerated dose (MTD) of stereotactic ablative radiation therapy (SABR) in combination with immunotherapy for the treatment of patients with metastatic melanoma. The study also investigates the effects of timing and dosing of SABR on clinical efficacy. Methods: Metastatic melanoma patients with at least 2 metastases received SABR to a single metastatic site. All patients had standard dose immunotherapy with anti-PD1 or anti-CTLA4 at the discretion of their treating clinician. Following a standard 3 + 3 design, patients were escalated through 3 SABR doses (10 Gy, 15 Gy, and 20 Gy) delivered at 3 different time points (with cycle 1, 2, or 3 of immunotherapy). Dose-limiting toxicities (DLT) were defined as grade 3 or higher toxicity within 3 months of first treatment and assessed by an independent data safety monitoring committee (IDSMC). Logistic or Cox regressions were used to assess the impact of SABR dose and timing on the progression free (PFS) and overall survival (OS) of this cohort. Results: Twenty-four patients were enrolled with a median clinical follow-up of 28 months. Four patients (16.7%) developed DLTs; 1 DLT occurred at a SABR-treated site, and all patients received 15 Gy. On this basis the IDSMC recommended stopping the trial and the MTD was defined at 10 Gy. The 2-year PFS was 21.9% (95% CI, 7.1%-41.8%) and 2-year OS was 49.6% (95% CI, 28.7%-67.6%). The median PFS for those receiving 10 Gy was numerically higher than for those receiving 15 Gy, 8.3 months versus 2.1 months (P =.38). The only treatment-related factor associated with both improved PFS (HR 0.08,
Earlier Diagnosis of Invasive Fusariosis with Aspergillus Serum Galactomannan Testing
Cross-reactivity of Fusarium species with serum galactomannan antigen (GMI) test has been observed. We sought to evaluate if GMI could help to early diagnose invasive fusariosis and to monitor treatment response. We reviewed the records of all patients with invasive fusariosis between 2008 and 2012 in three Brazilian hospitals. We selected patients who had at least 1 GMI test within 2 days before or after the date of the first clinical manifestation of fusariosis, and analyzed the temporal relationship between the first positive GMI test and the date of the diagnosis of invasive fusariosis, and the kinetics of GMI in relation to patients' response to treatment. We also selected 18 controls to determine the sensitivity and specificity of the test. Among 18 patients, 15 (83%) had at least one positive GMI (median 4, range 1â15). The sensitivity and specificity of was 83% and 67%, respectively. GMI was positive before the diagnosis of invasive fusariosis in 11 of the 15 cases (73%), at a median of 10 days (range 3â39), and after the diagnosis in 4 cases. GMI became negative in 8 of the 15 patients; 3 of these 8 patients (37.5%) were alive 90 days after the diagnosis of fusariosis compared with 2 of 7 (29%) who did not normalize GMI (pâ=â1.0). GMI is frequently positive in invasive fusariosis, and becomes positive before diagnosis in most patients. These findings may have important implications for the choice of antifungal therapy in settings with high prevalence of invasive fusariosis
Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth.
Infiltration of Foxp3(+) regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3(+) T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell-specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3(+) T reg cells were significantly reduced accompanied by enhanced activation of CD8(+) T cells within tumors of T cell-specific Nrp-1-deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1(+) T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3(+) T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression