134 research outputs found

    Optical depths for gamma-rays in the radiation field of a star heated by external X-ray source in LMXBs: Application to Her X-1 and Sco X-1

    Full text link
    The surface of a low mass star inside a compact low mass X-ray binary system (LMXB) can be heated by the external X-ray source which may appear due to the accretion process onto a companion compact object (a neutron star or a black hole). As a result, the surface temperature of the star can become significantly higher than it is in the normal state resulting from thermonuclear burning. We wonder whether high energy electrons and gamma-rays, injected within the binary system, can efficiently interact with this enhanced radiation field. To decide this, we calculate the optical depths for the gamma-ray photons in the radiation field of such irradiated star as a function of the phase of the binary system. Based on these calculations, we conclude that compact low mass X-ray binary systems may also become sources of high energy gamma-rays since conditions for interaction of electrons and gamma-rays are quite similar to these ones observed within the high mass TeV gamma-ray binaries such as LS 5039 and LSI 303 +61. However, due to differences in the soft radiation field, the expected gamma-ray light curves can significantly differ between low mass and high mass X-ray binaries. As an example, we apply such calculations to two well known LMXBs: Her X-1 and Sco X-1. It is concluded that electrons accelerated to high energies inside these binaries should find enough soft photon target from the companion star for efficient gamma-ray production.Comment: 10 pages, 8 figures, accepted to A&

    Gamma-rays from binary system with energetic pulsar and Be star with aspherical wind: PSR B1259-63/SS2883

    Get PDF
    At least one massive binary system containing an energetic pulsar, PSR B1259-63/SS2883, has been recently detected in the TeV gamma-rays by the HESS telescopes. These gamma-rays are likely produced by particles accelerated in the vicinity of the pulsar and/or at the pulsar wind shock, in comptonization of soft radiation from the massive star. However, the process of gamma-ray production in such systems can be quite complicated due to the anisotropy of the radiation field, complex structure of the pulsar wind termination shock and possible absorption of produced gamma-rays which might initiate leptonic cascades. In this paper we consider in detail all these effects. We calculate the gamma-ray light curves and spectra for different geometries of the binary system PSR B1259-63/SS2883 and compare them with the TeV gamma-ray observations. We conclude that the leptonic IC model, which takes into account the complex structure of the pulsar wind shock due to the aspherical wind of the massive star, can explain the details of the observed gamma-ray light curve.Comment: 12 pages, 11 figures, accepted for publication in MNRA

    The effects of diet and feeding techniques on growth factors and meat quality of common carp (Cyprinus carpio)

    Get PDF
    The study was conducted for 134 days. Common carp fry (60g ± 0.3g) were fed using two different diets containing only plant protein sources, without any animal protein inclusions. Diets were administered by two different methods: an automatic band feeder (diet 28/7 F and 28/15 F) for 12 hours a day (9.00 a.m. – 9.00 p.m.) and by hand (diet 28/7 H and 28/15 H) once a day (at 9 am). Weight, Specific Growth Rate (SGR), Protein Efficiency Ratio (PER), Fat Retention Index (FR) and Protein Retention Index (PR) were statistically higher in fish fed with the automatic feeder. On the contrary, the value of FCR was statistically higher in fish fed by hand. Diet composition did not have significant influence on growth performance. Survival rate was not statistically different among groups (85-96%). There was no significant effect of feeding method or diet on meat quality, such as color and fat content

    Very high energy gamma-ray emission from X-ray transients during major outbursts

    Get PDF
    Context: Some high mass X-ray binaries (HMXB) have been recently confirmed as gamma-ray sources by ground based Cherenkov telescopes. In this work, we discuss the gamma-ray emission from X-ray transient sources formed by a Be star and a highly magnetized neutron star. This kind of systems can produce variable hadronic gamma-ray emission through the mechanism proposed by Cheng and Ruderman, where a proton beam accelerated in the pulsar magnetosphere impacts the transient accretion disk. We choose as case of study the best known system of this class: A0535+26. Aims: We aim at making quantitative predictions about the very high-energy radiation generated in Be-X ray binary systems with strongly magnetized neutron stars. Methods: We study the gamma-ray emission generated during a major X-ray outburst of a HMXB adopting for the model the parameters of A0535+26. The emerging photon signal from the disk is determined by the grammage of the disk that modulates the optical depth. The electromagnetic cascades initiated by photons absorbed in the disk are explored, making use of the so-called "Approximation A" to solve the cascade equations. Very high energy photons induce Inverse Compton cascades in the photon field of the massive star. We implemented Monte Carlo simulations of these cascades, in order to estimate the characteristics of the resulting spectrum. Results: TeV emission should be detectable by Cherenkov telescopes during a major X-ray outburst of a binary formed by a Be star and a highly magnetized neutron star. The gamma-ray light curve is found to evolve in anti-correlation with the X-ray signal.Comment: 8 pages, 7 figures, accepted for publication in Astronomy and Astrophysical journa

    Right Structural and Functional Reorganization in Four-Year-Old Children with Perinatal Arterial Ischemic Stroke Predict Language Production

    Get PDF
    Brain imaging methods have contributed to shed light on the mechanisms of recovery after early brain insult. The assumption that the unaffected right hemisphere can take over language functions after left perinatal stroke is still under debate. Here, we report how patterns of brain structural and functional reorganization were associated with language outcomes in a group of 4-year-old children with left perinatal arterial ischemic stroke. Specifically, we gathered specific fine-grained developmental measures of receptive and productive aspects of language as well as standardized measures of cognitive development. We also collected structural neuroimaging data as well as functional activations during a passive listening story-telling fMRI task and a resting state session (rs-fMRI). Children with a left perinatal stroke showed larger lateralization indices of both structural and functional connectivity of the dorsal language pathway towards the right hemisphere that, in turn, were associated with better language outcomes. Importantly, the pattern of structural asymmetry was significantly more right-lateralized in children with a left perinatal brain insult than in a group of matched healthy controls. These results strongly suggest that early lesions of the left dorsal pathway and the associated perisylvian regions can induce the inter-hemispheric transfer of language functions to right homolog regions. This study provides combined evidence of structural and functional brain reorganization of language networks after early stroke with strong implications for neurobiological models of language development

    Fermi LAT Observations of LS I +61 303: First detection of an orbital modulation in GeV Gamma Rays

    Full text link
    This Letter presents the first results from the observations of LSI +61 303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 +/- 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 +/- 0.03(stat) +/- 0.07(syst) 10^{-6} ph cm^{-2} s^{-1}, with a cutoff at 6.3 +/- 1.1(stat) +/- 0.4(syst) GeV and photon index Gamma = 2.21 +/- 0.04(stat) +/- 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest the link between HE and VHE gamma rays is nontrivial.Comment: 7 pages, 5 figures, accepted for publication in ApJ Letters 21 July 200

    White matter cortico-striatal tracts predict apathy subtypes in Huntington's disease

    Get PDF
    BACKGROUND: Apathy is the neuropsychiatric syndrome that correlates most highly with Huntington's disease progression, and, like early patterns of neurodegeneration, is associated with lesions to cortico-striatal connections. However, due to its multidimensional nature and elusive etiology, treatment options are limited. OBJECTIVES: To disentangle underlying white matter microstructural correlates across the apathy spectrum in Huntington's disease. METHODS: Forty-six Huntington's disease individuals (premanifest (N = 22) and manifest (N = 24)) and 35 healthy controls were scanned at 3-tesla and underwent apathy evaluation using the short-Problem Behavior Assessment and short-Lille Apathy Rating Scale, with the latter being characterized into three apathy domains, namely emotional, cognitive, and auto-activation deficit. Diffusion tensor imaging was used to study whether individual differences in specific cortico-striatal tracts predicted global apathy and its subdomains. RESULTS: We elucidate that apathy profiles may develop along differential timelines, with the auto-activation deficit domain manifesting prior to motor onset. Furthermore, diffusion tensor imaging revealed that inter-individual variability in the disruption of discrete cortico-striatal tracts might explain the heterogeneous severity of apathy profiles. Specifically, higher levels of auto-activation deficit symptoms significantly correlated with increased mean diffusivity in the right uncinate fasciculus. Conversely, those with severe cognitive apathy demonstrated increased mean diffusivity in the right frontostriatal tract and left dorsolateral prefrontal cortex to caudate nucleus tract. CONCLUSIONS: The current study provides evidence that white matter correlates associated with emotional, cognitive, and auto-activation subtypes may elucidate the heterogeneous nature of apathy in Huntington's disease, as such opening a door for individualized pharmacological management of apathy as a multidimensional syndrome in other neurodegenerative disorders

    Long-term monitoring of the high-energy gamma-ray emission from LS I +61{\deg} 303 and LS 5039

    Get PDF
    The Fermi Large Area Telescope (LAT) reported the first definitive GeV detections of the binaries LS I +61\degree 303 and LS 5039 in the first year after its launch in June, 2008. These detections were unambiguous as a consequence of the reduced positional uncertainty and the detection of modulated gamma-ray emission on the corresponding orbital periods. An analysis of new data from the LAT, comprising 30 months of observations, identifies a change in the gamma-ray behavior of LS I +61\degree 303. An increase in flux is detected in March 2009 and a steady decline in the orbital flux modulation is observed. Significant emission up to 30GeV is detected by the LAT; prior datasets led to upper limits only. Contemporaneous TeV observations no longer detected the source, or found it -in one orbit- close to periastron, far from the phases at which the source previously appeared at TeV energies. The detailed numerical simulations and models that exist within the literature do not predict or explain many of these features now observed at GeV and TeV energies. New ideas and models are needed to fully explain and understand this behavior. A detailed phase-resolved analysis of the spectral characterization of LS I +61\degree 303 in the GeV regime ascribes a power law with an exponential cutoff spectrum along each analyzed portion of the system's orbit. The on-source exposure of LS 5039 is also substantially increased with respect to our prior publication. In this case, whereas the general gamma-ray properties remain consistent, the increased statistics of the current dataset allows for a deeper investigation of its orbital and spectral evolution.Comment: 12 pages, 13 figures, accepted for publication in Ap

    MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6

    Get PDF
    We report on the observation of the region around supernova remnant G65.1+0.6 with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified as GeV pulsars and both have a possible counterpart detected at about 35 TeV by the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and found no significant emission in the range around 1 TeV. We therefore report differential flux upper limits, assuming the emission to be point-like (<0.1 deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the two sources respectively. This implies that the Milagro emission is either extended over a much larger area than our point spread function, or it must be peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in the TeV band.Comment: 8 pages, 3 figures, 1 tabl

    TeV Gamma-ray Astronomy: A Summary

    Full text link
    The field of TeV gamma-ray astronomy has produced many exciting results over the last decade. Both the source catalogue, and the range of astrophysical questions which can be addressed, continue to expand. This article presents a topical review of the field, with a focus on the observational results of the imaging atmospheric Cherenkov telescope arrays. The results encompass pulsars and their nebulae, supernova remnants, gamma-ray binary systems, star forming regions and starburst and active galaxies.Comment: 19 pages. Astroparticle Physics, in press. See published article for higher resolution figures. Cite as: J. Holder, TeV gamma-ray astronomy: A summary, Astropart. Phys. (2012), http://dx.doi.org/10.1016/j.astropartphys.2012.02.01
    corecore