1,713 research outputs found

    Spatio-temporal stochastic resonance induces patterns in wetland vegetation dynamics

    Get PDF
    Water availability is a major environmental driver affecting riparian and wetland vegetation. The interaction between water table fluctuations and vegetation in a stochastic environment contributes to the complexity of the dynamics of these ecosystems. We investigate the possible emergence of spatial patterns induced by spatio-temporal stochastic resonance in a simple model of groundwater-dependent ecosystems. These spatio-temporal dynamics are driven by the combined effect of three components: (i) an additive white Gaussian noise, accounting for external random disturbances such as fires or fluctuations in rain water availability, (ii) a weak periodic modulation in time, describing hydrological drivers such as seasonal fluctuations of water table depth, and (iii) a spatial coupling term, which takes into account the ability of vegetation to spread and colonize other parts of the landscape. A suitable cooperation between these three terms is able to give rise to ordered structures which show spatial and temporal coherence, and are statistically steady in time.Comment: 9 pages, 7 figure

    Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program

    Get PDF
    Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset

    Interstellar Turbulence II: Implications and Effects

    Full text link
    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spectrum and amplitude of fluctuations. The theory of diffraction and refraction is reviewed, as are the main observations and scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and Astrophysic

    Seasonal Consumptive Demand and Prey Use by Stocked Saugeyes in Ohio Reservoirs

    Get PDF
    Community structure and species composition may be strongly influenced by predator-prey interactions resulting from and leading to episodes of population abundance or scarcity. We quantified diets of stocked saugeyes (female walleye Sander vitreus Ă— male sauger S. canadensis) and estimated biomass of their primary prey, gizzard shad Dorosoma cepedianum, in three Ohio reservoirs at quarterly intervals during July 2002-July 2003 to determine whether saugeye consumptive demand could exceed the supply of available gizzard shad prey, resulting in a shift to alternative prey. We incorporated water temperature and saugeye diet composition, growth, and mortality into walleye bioenergetics models, which allowed us to compare estimated prey-specific consumption rates by saugeyes with gizzard shad standing stocks estimated with acoustics. Spring and summer were critical seasons. During spring, gizzard shad biomass was low, saugeye consumptive demand was low, and saugeyes consumed primarily alternative prey. During summer, when age-0 gizzard shad became available as prey, saugeyes consumed similar proportions of gizzard shad and alternative prey. Saugeye cumulative consumptive demand in summer was high and approached the gizzard shad standing stock. However, during fall and winter, gizzard shad supply was adequate to support high (fall) or declining (winter) saugeye consumptive demand. Across reservoirs and seasons, saugeyes consumed alternative prey to varying degrees, primarily sunfishes Lepomis spp., yellow perch Perca flavescens, logperch Percina caprodes, and minnows Pimephales spp. Seasonal asynchrony between saugeye consumptive demand and gizzard shad biomass during spring and summer indicated that a saugeye population with high survival, growth, and consumptive demand will opportunistically increase use of prey other than gizzard shad. The manner in which saugeye predation quantitatively influences these prey species could not be assessed. However, overexploitation of gizzard shad prey appears to be unlikely at current saugeye population sizes, particularly considering the opportunistic use of alternative prey and the high reproductive potential of gizzard shad.Funding for this research was provided by the Ohio Department of Natural Resources, Division of Wildlife; Federal Aid in Sport Fish Restoration Project F-69-P, Fish Management in Ohio; and the Department of Evolution, Ecology, and Organismal Biology at The Ohio State University

    Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target

    Get PDF
    Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.Mª Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript

    Spatial Segregation of BMP/Smad Signaling Affects Osteoblast Differentiation in C2C12 Cells

    Get PDF
    BACKGROUND: Bone morphogenetic proteins (BMPs) are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulation within the BMP-induced Smad transcriptional pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we discriminate between Smad signaling events that are dynamin-dependent (i.e., require an intact endocytic pathway) and dynamin-independent. Inhibition of dynamin-dependent endocytosis in fluorescence microscopy and fractionation studies revealed a delay in Smad1/5/8 phosphorylation and nuclear translocation after BMP-2 stimulation of C2C12 cells. Using whole genome microarray and qPCR analysis, we identified two classes of BMP-2 induced genes that are differentially affected by inhibition of endocytosis. Thus, BMP-2 induced gene expression of Id1, Id3, Dlx2 and Hey1 is endocytosis-dependent, whereas BMP-2 induced expression of Id2, Dlx3, Zbtb2 and Krt16 is endocytosis-independent. Furthermore, we demonstrate that short term inhibition of endocytosis interferes with osteoblast differentiation as measured by alkaline phosphatase (ALP) production and qPCR analysis of osteoblast marker gene expression. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that dynamin-dependent endocytosis is crucial for the concise spatial activation of the BMP-2 induced signaling cascade. Inhibition of endocytic processes during BMP-2 stimulation leads to altered Smad1/5/8 signaling kinetics and results in differential target gene expression. We show that interfering with the BMP-2 induced transcriptional network by endocytosis inhibition results in an attenuation of osteoblast differentiation. This implies that selective sensitivity of gene expression to endocytosis provides an additional mechanism for the cell to respond to BMP in a context specific manner. Moreover, we suggest a novel Smad dependent signal cascade induced by BMP-2, which does not require endocytosis

    Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506?

    Get PDF
    The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects
    • …
    corecore