1,046 research outputs found

    Variational Inequalities in Critical-State Problems

    Full text link
    Similar evolutionary variational inequalities appear as convenient formulations for continuous quasistationary models for sandpile growth, formation of a network of lakes and rivers, magnetization of type-II superconductors, and elastoplastic deformations. We outline the main steps of such models derivation and try to clarify the origin of this similarity. New dual variational formulations, analogous to mixed variational inequalities in plasticity, are derived for sandpiles and superconductors.Comment: Submitted for publicatio

    Tumor and circulating biomarkers in patients with second-line hepatocellular carcinoma from the randomized phase II study with tivantinib

    Get PDF
    ARQ 197-215 was a randomized placebo-controlled phase II study testing the MET inhibitor tivantinib in second-line hepatocellular carcinoma (HCC) patients. It identified tumor MET as a key biomarker in HCC. Aim of this research was to study the prognostic and predictive value of tumor (MET, the receptor tyrosine kinase encoded by the homonymous MNNG-HOS transforming gene) and circulating (MET, hepatocyte growth factor [HGF], alpha-fetoprotein [AFP], vascular endothelial growth factor [VEGF]) biomarkers in second-line HCC. Tumor MET-High status was centrally assessed by immunohistochemistry. Circulating biomarkers were centrally analyzed on serum samples collected at baseline and every 4-8 weeks, using medians as cut-off to determine High/Low status. Tumor MET, tested in 77 patients, was more frequently High after (82%) versus before (40%) sorafenib. A significant interaction (p = 0.04) between tivantinib and baseline tumor MET in terms of survival was observed. Baseline circulating MET and HGF (102 patients) High status correlated with shorter survival (HR 0.61, p = 0.03, and HR 0.60, p = 0.02, respectively), while the association between AFP (104 patients) or VEGF (103 patients) status and survival was non-significant. Conclusions: Tumor MET levels were higher in patients treated with sorafenib. Circulating biomarkers such as MET and HGF may be prognostic in second-line HCC. These results need to be confirmed in larger randomized clinical trials

    Escherichia coli induces apoptosis and proliferation of mammary cells

    Get PDF
    Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection, The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1 beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection, Induction of matrix metalloproteinase-g, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue, These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation

    Confinement- Deconfinement Phase Transition in Hot and Dense QCD at Large N

    Full text link
    We conjecture that the confinement- deconfinement phase transition in QCD at large number of colors N and N_f\ll N at T\neq 0 and \mu\neq 0 is triggered by the drastic change in \theta behavior. The conjecture is motivated by the holographic model of QCD where confinement -deconfinement phase transition indeed happens precisely at the value of temperature T=T_c where \theta dependence experiences a sudden change in behavior[1]. The conjecture is also supported by quantum field theory arguments when the instanton calculations (which trigger the \theta dependence) are under complete theoretical control for T>T_c, suddenly break down immediately below T<T_c with sharp changes in the \theta dependence. Finally, the conjecture is supported by a number of numerical lattice results. We employ this conjecture to study confinement -deconfinement phase transition of dense QCD at large \mu in large N limit by analyzing the \theta dependence. We find that the confinement- deconfinement phase transition at N_f\ll N happens at very large quark chemical potential \mu_c\sim \sqrt{N}\Lambda_{QCD}. This result agrees with recent findings by McLerran and Pisarski[2]. We also speculate on case when N_f\sim N.Comment: 10 pages, final version to appear in Nucl. Phys.

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur

    Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers

    Get PDF
    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series

    Universality of Phases in QCD and QCD-like Theories

    Full text link
    We argue that the whole or the part of the phase diagrams of QCD and QCD-like theories should be universal in the large-N_c limit through the orbifold equivalence. The whole phase diagrams, including the chiral phase transitions and the BEC-BCS crossover regions, are identical between SU(N_c) QCD at finite isospin chemical potential and SO(2N_c) and Sp(2N_c) gauge theories at finite baryon chemical potential. Outside the BEC-BCS crossover region in these theories, the phase diagrams are also identical to that of SU(N_c) QCD at finite baryon chemical potential. We give examples of the universality in some solvable cases: (i) QCD and QCD-like theories at asymptotically high density where the controlled weak-coupling calculations are possible, (ii) chiral random matrix theories of different universality classes, which are solvable large-N (large volume) matrix models of QCD. Our results strongly suggest that the chiral phase transition and the QCD critical point at finite baryon chemical potential can be studied using sign-free theories, such as QCD at finite isospin chemical potential, in lattice simulations.Comment: v1: 35 pages, 6 figures; v2: 37 pages, 6 figures, minor improvements, conclusion unchanged; v3: version published in JHE
    • …
    corecore