26 research outputs found

    Pointing mechanisms for the Shuttle Radar Laboratory

    Get PDF
    The Shuttle Radar Laboratory (SRL) is scheduled for launch in December of 1993 on the first of its two missions. The SRL has three major radar instruments: two distributed phased-array antennas, which make up the Spaceborne Imaging Radar-C System (SIR-C) and are capable of being electronically steered, and one X-Band Synthetic Aperture Radar (X-SAR), which is pointed mechanically by a suite of mechanisms. This paper will describe these mechanisms and summarize the development difficulties that were encountered in bringing them from the design stage through prototype development and protoflight testing

    Measurement of dσ/dyd\sigma/dy of Drell-Yan e+ee^+e^- pairs in the ZZ Mass Region from ppˉp\bar{p} Collisions at s=1.96\sqrt{s}=1.96 TeV

    Get PDF
    Submitted to Phys. Letter BWe report on a CDF measurement of the total cross section and rapidity distribution, dσ/dyd\sigma/dy, for qqˉγ/Ze+eq\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-} events in the ZZ boson mass region ($66M_{ee}We report on a CDF measurement of the total cross section and rapidity distribution, dσ/dy, for γ*/Z→e+e− events in the Z boson mass region (66<Mee<116 GeV/c2) produced in p pbar collisions at \sqrt{s}=1.96 TeV with 2.1 fb−1 of integrated luminosity. The measured cross section of 257±16 pb and dσ/dy distribution are compared with Next-to-Leading-Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and dσ/dy measurements with theoretical calculations with the most recent NNLO PDFs.Peer reviewe

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    The Mars Exploration Rover Instrument Positioning System

    No full text
    During Mars Exploration Rover (MER) surface operations, the scientific data gathered by the in situ instrument suite has been invaluable with respect to the discovery of a significant water history at Meridiani Planum and the hint of water processes at work in Gusev Crater. Specifically, the ability to perform precision manipulation from a mobile platform (i.e., mobile manipulation) has been a critical part of the successful operation of Spirit and Opportunity rovers. As such, this paper describes the MER Instrument Positioning System that allows the in situ instruments to operate and collect their important science data using a robust, dexterous robotic arm combined with visual target selection and autonomous software functions

    The Phoenix Mars Lander Robotic Arm

    No full text
    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission

    Science-driven Preparations for Europa Surface Operations

    No full text
    Harboring potentially habitable environments, Jupiter’s moon Europa has risen to the forefront of planetary exploration. There is a general consensus in the community that under Europa’s geologically young ice shell exists a subsurface ocean, probably in contact with a silicate seafloor -- which may lead to an ocean rich in the elements and energy needed for the existence of life. Landforms on the surface additionally suggest recent or ongoing geologic activity. As NASA continues to move forward with the exploration of Europa through the upcoming Europa Clipper flagship fly-by mission, efforts are also underway to mature the technologies required for future surface operations, such as those discussed in the Technology Development section of the recently released “Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032”. However, there is currently a paucity of reconnaissance data for Europa’s surface characteristics and composition. Thus, technology development efforts are focusing on a robust landing system capable of navigating unknown lander-scale terrains to safely deliver a payload to the surface. To inform this development effort, the Europa Lander pre-project team developed a comprehensive Terrain Specification Document (TSD) that summarizes current knowledge regarding surface characteristics such as optical, thermal, and mechanical properties, chemical composition, topography, and environmental context. This information is used to explore the design space and requirements for lander technologies, including capabilities of the autonomous landing system, and interaction with the lander workspace and sampling architecture on the surface. This presentation will summarize the current status of the TSD, the dual science-engineering approach used to develop the structure and content, and lessons learned for future development of similar documents for Europa and other bodies
    corecore