14 research outputs found

    Ovine IgA-reactive proteins from Teladorsagia circumcincta infective larvae

    Get PDF
    AbstractInfection of small ruminants with Teladorsagia circumcincta has, until now, been controlled using a combination of pasture management and frequent anthelmintic treatments. Resistance to the commonly used anthelmintics has driven research into the development of a subunit vaccine, encouraged by the demonstration of development of protective immunity in sheep following exposure to this parasite. Local immune effectors in the abomasum, in particular IgA, are thought to play important roles in naturally- and experimentally-acquired immunity. L3s represent the first contact of this pathogen with the host immune system and, herein, the presence of L3 antigen-specific IgA was demonstrated in abomasal mucus from immune sheep. This antibody source was used to immunoaffinity purify and identify IgA-reactive molecules present in L3s. We identified 155 different proteins in this way, including a number of activation-associated secretory proteins, venom allergen-like-type proteins, detoxifying enzymes, galectins and a suite of other potential vaccine candidate molecules. Levels of immunoaffinity-enriched L3 antigen-specific IgA in gastric lymph from previously-infected sheep were statistically significantly higher (P=0.004) than those measured in helminth-free sheep and a statistically significant negative correlation (P=0.005, rs=−0.565) was identified between immunoaffinity-enriched L3 antigen-specific IgA levels in efferent gastric lymph and total T. circumcincta burden measured at necropsy. In addition, a statistically significant positive correlation (P=0.007, rs=0.534) was measured between immunoaffinity-enriched L3 antigen-specific IgA levels in efferent gastric lymph and the percentage of inhibited L4s enumerated at necropsy. These results indicate that the purified antigens contain components that could be strongly considered as vaccine candidates

    Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy.

    Get PDF
    Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1

    Die Antibiotica

    No full text

    Literaturverzeichnis

    No full text

    Die Sexualhormone

    No full text

    Pyelonephritis und chronische interstitielle Nephritis

    No full text
    corecore