312 research outputs found

    General relativistic polarized radiative transfer: building a dynamics-observations interface

    Full text link
    The rising amount of polarized observations of relativistic sources requires the correct theory for proper model fitting. The equations for general relativistic (GR) polarized radiative transfer are derived starting from the Boltzmann equation and basic ideas of general relativity. The derivation is aimed at providing a practical guide to reproducing the synchrotron part of radio & sub-mm emission from low luminosity active galactic nuclei (LLAGNs), in particular Sgr A*, and jets. The recipe for fast exact calculation of cyclo-synchrotron emissivities, absorptivities, Faraday rotation and conversion coefficients is given for isotropic particle distributions. The multitude of physical effects influencing simulated spectrum is discussed. The application of the prescribed technique is necessary to determine the black hole (BH) spin in LLAGNs, constraining it with all observations of total flux, linear and circular polarization fractions, and electric vector position angle as functions of the observed frequency.Comment: 9 pages, 3 figures, accepted by MNRA

    Tuning the second-harmonic generation in AlGaAs nanodimers via non-radiative state optimization [Invited]

    Get PDF
    Dielectric nanocavities are emerging as a versatile and powerful tool for the linear and nonlinear manipulation of light at the nanoscale. In this work, we exploit the effective coupling of electric and toroidal modes in AlGaAs nanodimers to locally enhance both electric and magnetic fields while minimizing the optical scattering, thereby optimizing their second-harmonic generation efficiency with respect to the case of a single isolated nanodisk. We also demonstrate that proper near-field coupling can provide further degrees of freedom to control the polarization state and the radiation diagram of the second-harmonic field

    Sagittarius A* Accretion Flow and Black Hole Parameters from General Relativistic Dynamical and Polarized Radiative Modeling

    Full text link
    We obtain estimates of Sgr A* accretion flow and black hole parameters by fitting polarized sub-mm observations with spectra computed using three-dimensional (3D) general relativistic (GR) magnetohydrodynamical (MHD) (GRMHD) simulations. Observations are compiled from averages over many epochs from reports in 29 papers for estimating the mean fluxes Fnu, linear polarization (LP) fractions, circular polarization (CP) fractions, and electric vector position angles (EVPAs). GRMHD simulations are computed with dimensionless spins a_*=0,0.5,0.7,0.9,0.98 over a 20,000M time interval. We perform fully self-consistent GR polarized radiative transfer using our new code to explore the effects of spin a_*, inclination angle \theta, position angle (PA), accretion rate Mdot, and electron temperature Te (Te is reported for radius 6M). By fitting the mean sub-mm fluxes and LP/CP fractions, we obtain estimates for these model parameters and determine the physical effects that could produce polarization signatures. Our best bet model has a_*=0.5, \theta=75deg, PA=115deg, Mdot=4.6*10^{-8}M_Sun/year, and Te=3.1*10^10K at 6M. The sub-mm CP is mainly produced by Faraday conversion as modified by Faraday rotation, and the emission region size at 230GHz is consistent with the VLBI size of 37microas. Across all spins, model parameters are in the ranges \theta=42deg-75deg, Mdot=(1.4-7.0)*10^{-8}M_Sun/year, and Te=(3-4)*10^10K. Polarization is found both to help differentiate models and to introduce new observational constraints on the effects of the magnetic field that might not be fit by accretion models so-far considered.Comment: 19 pages, 11 figures, accepted to Ap

    Study of the diffraction pattern of cloud particles and the respective responses of optical array probes

    Get PDF
    Optical array probes (OAPs) are classical instrumental means to derive shape, size, and number concentration of cloud and precipitation particles from 2-D images. However, recorded 2-D images are subject to distortion based on the diffraction of light when particles are imaged out of the object plane of the optical device. This phenomenon highly affects retrievals of microphysical properties of cloud particles. Previous studies of this effect mainly focused on spherical droplets. In this study we propose a theoretical method to compute diffraction patterns of all kinds of cloud particle shapes in order to simulate the response recorded by an OAP. To check the validity of this method, a series of experimental measurements have been performed with a 2D-S probe mounted on a test bench. Measurements are performed using spinning glass discs with imprinted non-circular opaque particle shapes.</p

    Universal Superfield Action for N=8N=4N=8 \to N=4 Partial Breaking of Global Supersymmetry in D=1

    Get PDF
    We explicitly construct N=4 worldline supersymmetric minimal off-shell actions for five options of 1/2 partial spontaneous breaking of N=8,d=1N=8, d=1 Poincar\'e supersymmetry. We demonstrate that the action for the N=4 Goldstone supermultiplet with four fermions and four auxiliary components is a universal one. The remaining actions for the Goldstone supermultiplets with physical bosons are obtained from the universal one by off-shell duality transformations.Comment: 9 pages, LaTeX file, PACS numbers: 11.30.Pb, 03.65.-

    N=4 supersymmetric Eguchi-Hanson sigma model in d=1

    Full text link
    We show that it is possible to construct a supersymmetric mechanics with four supercharges possessing not conformally flat target space. A general idea of constructing such models is presented. A particular case with Eguchi--Hanson target space is investigated in details: we present the standard and quotient approaches to get the Eguchi--Hanson model, demonstrate their equivalence, give a full set of nonlinear constraints, study their properties and give an explicit expression for the target space metric.Comment: LaTeX, 9 page

    Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter VLBI Observations of Sagittarius A*

    Full text link
    Millimeter very-long baseline interferometry (mm-VLBI) provides the novel capacity to probe the emission region of a handful of supermassive black holes on sub-horizon scales. For Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, this provides access to the region in the immediate vicinity of the horizon. Broderick et al. (2009) have already shown that by leveraging spectral and polarization information as well as accretion theory, it is possible to extract accretion-model parameters (including black hole spin) from mm-VLBI experiments containing only a handful of telescopes. Here we repeat this analysis with the most recent mm-VLBI data, considering a class of aligned, radiatively inefficient accretion flow (RIAF) models. We find that the combined data set rules out symmetric models for Sgr A*'s flux distribution at the 3.9-sigma level, strongly favoring length-to-width ratios of roughly 2.4:1. More importantly, we find that physically motivated accretion flow models provide a significantly better fit to the mm-VLBI observations than phenomenological models, at the 2.9-sigma level. This implies that not only is mm-VLBI presently capable of distinguishing between potential physical models for Sgr A*'s emission, but further that it is sensitive to the strong gravitational lensing associated with the propagation of photons near the black hole. Based upon this analysis we find that the most probable magnitude, viewing angle, and position angle for the black hole spin are a=0.0(+0.64+0.86), theta=68(+5+9)(-20-28) degrees, and xi=-52(+17+33)(-15-24) east of north, where the errors quoted are the 1-sigma and 2-sigma uncertainties.Comment: 15 pages, 10 figures, submitted to Ap

    Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions

    Get PDF
    We show that in the loop-erased random walk problem, the exponent characterizing probability distribution of areas of erased loops is superuniversal. In d-dimensions, the probability that the erased loop has an area A varies as A^{-2} for large A, independent of d, for 2 <= d <= 4. We estimate the exponents characterizing the distribution of perimeters and areas of erased loops in d = 2 and 3 by large-scale Monte Carlo simulations. Our estimate of the fractal dimension z in two-dimensions is consistent with the known exact value 5/4. In three-dimensions, we get z = 1.6183 +- 0.0004. The exponent for the distribution of durations of avalanche in the three-dimensional abelian sandpile model is determined from this by using scaling relations.Comment: 25 pages, 1 table, 8 figure

    Exact and near backscattering measurements of the linear depolarisation ratio of various ice crystal habits generated in a laboratory cloud chamber

    Get PDF
    © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).Ice clouds were generated in the Manchester Ice Cloud Chamber (MICC), and the backscattering linear depolarisation ratio, δ, was measured for a variety of habits. To create an assortment of particle morphologies, the humidity in the chamber was varied throughout each experiment, resulting in a range of habits from the pristine to the complex. This technique was repeated at three temperatures: −7 °C, −15 °C and −30 °C, in order to produce both solid and hollow columns, plates, sectored plates and dendrites. A linearly polarised 532 nm continuous wave diode laser was directed through a section of the cloud using a non-polarising 50:50 beam splitter. Measurements of the scattered light were taken at 178°, 179° and 180°, using a Glan–Taylor prism to separate the co- and cross-polarised components. The intensities of these components were measured using two amplified photodetectors and the ratio of the cross- to co-polarised intensities was measured to find the linear depolarisation ratio. In general, it was found that Ray Tracing over-predicts the linear depolarisation ratio. However, by creating more accurate particle models which better represent the internal structure of ice particles, discrepancies between measured and modelled results (based on Ray Tracing) were reduced.Peer reviewe

    Reversals in nature and the nature of reversals

    Get PDF
    The asymmetric shape of reversals of the Earth's magnetic field indicates a possible connection with relaxation oscillations as they were early discussed by van der Pol. A simple mean-field dynamo model with a spherically symmetric α\alpha coefficient is analysed with view on this similarity, and a comparison of the time series and the phase space trajectories with those of paleomagnetic measurements is carried out. For highly supercritical dynamos a very good agreement with the data is achieved. Deviations of numerical reversal sequences from Poisson statistics are analysed and compared with paleomagnetic data. The role of the inner core is discussed in a spectral theoretical context and arguments and numerical evidence is compiled that the growth of the inner core might be important for the long term changes of the reversal rate and the occurrence of superchrons.Comment: 24 pages, 12 figure
    corecore