1,036 research outputs found
A communication-less parallel algorithm for tridiagonal Toeplitz systems
AbstractDiagonally dominant tridiagonal Toeplitz systems of linear equations arise in many application areas and have been well studied in the past. Modern interest in numerical linear algebra is often focusing on solving classic problems in parallel. In McNally [Fast parallel algorithms for tri-diagonal symmetric Toeplitz systems, MCS Thesis, University of New Brunswick, Saint John, 1999], an m processor Split & Correct algorithm was presented for approximating the solution to a symmetric tridiagonal Toeplitz linear system of equations. Nemani [Perturbation methods for circulant-banded systems and their parallel implementation, Ph.D. Thesis, University of New Brunswick, Saint John, 2001] and McNally (2003) adapted the works of Rojo [A new method for solving symmetric circulant tri-diagonal system of linear equations, Comput. Math. Appl. 20 (1990) 61â67], Yan and Chung [A fast algorithm for solving special tri-diagonal systems, Computing 52 (1994) 203â211] and McNally et al. [A split-correct parallel algorithm for solving tri-diagonal symmetric Toeplitz systems, Internat. J. Comput. Math. 75 (2000) 303â313] to the non-symmetric case. In this paper we present relevant background from these methods and then introduce an m processor scalable communication-less approximation algorithm for solving a diagonally dominant tridiagonal Toeplitz system of linear equations
A 5000-year record of relative sea-level change in New Jersey, USA
Stratigraphic data from salt marshes provide accurate reconstructions of Holocene relative sea level (RSL) change and necessary constraints to models of glacial isostatic adjustment (GIA), which is the dominant cause of late Holocene RSL rise along the U.S. mid-Atlantic coast. Here, we produce a new mid- to late-Holocene RSL record from a salt marsh bordering Great Bay in southern New Jersey using basal peats. We use a multi-proxy approach (foraminifera and geochemistry) to identify the indicative meaning of the basal peats and produce sea-level index points (SLIPs) that include a vertical uncertainty for tidal range change and sediment compaction and a temporal uncertainty based on high precision Accelerator Mass Spectrometry radiocarbon dating of salt-marsh plant macrofossils. The 14 basal SLIPs range from 1211 ± 56 years BP to 4414 ± 112 years BP, which we combine with published RSL data from southern New Jersey and use with a spatiotemporal statistical model to show that RSL rose 8.6 m at an average rate of 1.7 ± 0.1 mm/yr (1Ï) from 5000 years BP to present. We compare the RSL changes with an ensemble of 1D (laterally homogenous) and site-specific 3D (laterally heterogeneous) GIA models, which tend to overestimate the magnitude of RSL rise over the last 5000 years. The continued discrepancy between RSL data and GIA models highlights the importance of using a wide array of ice model and viscosity model parameters to more precisely fit site-specific RSL data along the U.S. mid-Atlantic coast
L'environnement futur en Europe de l'ést et de l'ouest: Consequences de divers scénarios de développement
This study analyzes eleven European environmental policy "dilemmas" for four alternative socioeconomic development pathways to the year 2030. The dilemmas include problems associated with: water management, soil acidification, forestry wood supply, marginalized land, sea level rise, coastal problems, chemical "time bombs", non-point source toxic materials, transport growth, urbanization, and summer oxidant episodes
Future Environments for Europe: Some Implications of Alternative Development Paths
This study analyzes eleven European environmental policy "dilemmas" for four alternative socioeconomic development pathways to the year 2030. The dilemmas include problems associated with: water management, soil acidification, forestry wood supply, marginalized land, sea level rise, coastal problems, chemical "time bombs", non-point source toxic materials, transport growth, urbanization, and summer oxidant episodes
Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft
A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASA's N+2 goals for noise and performance. Model scale data from offset jets were used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called "programmed lapse rate" was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable mission range performance; one is a conventional mixed-flow turbofan and the other is a three-stream variable-cycle engine. Separate flow offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10% reduction in thrust just after clearing the runway, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10% reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with engine oversizing and derated takeoff, but more detailed mission studies are needed to investigate the range impacts as well as the practical limits for safety and takeoff regulations
"Author! Author!" : Shakespeare and biography
Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor & Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the âworksâ, and may or may not refer to an author whose âlifeâ contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of âlifeâ that puts itself into âworksâ, and this is particularly challenging where the âworksâ predominate massively over the salient facts of the âlifeâ. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's âpersonalityâ from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe
Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis
Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases
NMR and NQR Fluctuation Effects in Layered Superconductors
We study the effect of thermal fluctuations of the s-wave order parameter of
a quasi two dimensional superconductor on the nuclear spin relaxation rate near
the transition temperature Tc. We consider both the effects of the amplitude
fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations
in weakly coupled layered superconductors. In the treatment of the amplitude
fluctuations we employ the Gaussian approximation and evaluate the longitudinal
relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair
breaking effects, using the static pair fluctuation propagator D. The increase
in 1/T1 due to pair breaking in D is overcompensated by the decrease arising
from the single particle Green's functions. The result is a strong effect on
1/T1 for even a small amount of pair breaking. The phase fluctuations are
described in terms of dynamical BKT excitations in the form of pancake
vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field
fluctuations caused by the translational motion of VA excitations on 1/T1 and
on the transverse relaxation rate 1/T2 on both sides of the BKT transitation
temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly
on the diffusion constant that governs the motion of free and bound vortices as
well as the annihilation of VA pairs. We discuss the relaxation rates for real
multilayer systems where the diffusion constant can be small and thus increase
the lifetime of a VA pair, leading to an enhancement of the rates. We also
discuss in some detail the experimental feasibility of observing the effects of
amplitude fluctuations in layered s-wave superconductors such as the
dichalcogenides and the effects of phase fluctuations in s- or d-wave
superconductors such as the layered cuprates.Comment: 38 pages, 12 figure
Impact of rare earth doping on the luminescence of lanthanum aluminum silicate glasses for radiation sensing
Large core soft glass fibers have been demonstrated to be promising candidates as intrinsic fiber sensors for radiation detection and dosimetry applications. Doping with rare earth ions enhanced their radiation sensitivity. SiO2-Al2O3-La2O3 (SAL) glasses offer easy fabrication of large core fibers with high rare earth concentration and higher mechanical strength than soft glasses. This paper evaluates the suitability of the SAL glass type for radiation dosimetry based on optically stimulated luminescence (OSL) via a comprehensive investigation of the spectroscopic and dosimetric properties of undoped and differently rare earth doped bulk SAL glass samples. Due to the low intensity of the rare earth luminescence peaks in the 250â400 nm OSL detection range, the OSL response for all the SAL glasses is not caused by the rare earth ions but by radiation-induced defects that act as intrinsic centers for the recombination of electrons and holes produced by the ionizing radiation, trapped in fabrication induced defect centers, and then released via stimulation with 470 nm light. The rare earth ions interfere with these processes involving intrinsic centers. This dosimetric behavior of highly rare earth doped SAL glasses suggests that enhancement of OSL response requires lower rare earth concentrations and/or longer wavelength OSL detection range.Ruth E. Shaw, Christopher A. G. Kalnins, Carly A. Whittaker, Jillian E. Moffatt, Georgios Tsiminis, Elizaveta Klantsataya, David Ottaway, Nigel A. Spooner, Doris Litzkendorf, Anne Matthes, Anka Schwuchow, Katrin Wondraczek, and Heike Ebendorff-Heideprie
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
- âŠ