201 research outputs found

    Motivation and incentives of rural maternal and neonatal health care providers: a comparison of qualitative findings from Burkina Faso, Ghana and Tanzania.

    Get PDF
    In Burkina Faso, Ghana and Tanzania strong efforts are being made to improve the quality of maternal and neonatal health (MNH) care. However, progress is impeded by challenges, especially in the area of human resources. All three countries are striving not only to scale up the number of available health staff, but also to improve performance by raising skill levels and enhancing provider motivation. In-depth interviews were used to explore MNH provider views about motivation and incentives at primary care level in rural Burkina Faso, Ghana and Tanzania. Interviews were held with 25 MNH providers, 8 facility and district managers, and 2 policy-makers in each country. Across the three countries some differences were found in the reasons why people became health workers. Commitment to remaining a health worker was generally high. The readiness to remain at a rural facility was far less, although in all settings there were some providers that were willing to stay. In Burkina Faso it appeared to be particularly difficult to recruit female MNH providers to rural areas. There were indications that MNH providers in all the settings sometimes failed to treat their patients well. This was shown to be interlinked with differences in how the term 'motivation' was understood, and in the views held about remuneration and the status of rural health work. Job satisfaction was shown to be quite high, and was particularly linked to community appreciation. With some important exceptions, there was a strong level of agreement regarding the financial and non-financial incentives that were suggested by these providers, but there were clear country preferences as to whether incentives should be for individuals or teams. Understandings of the terms and concepts pertaining to motivation differed between the three countries. The findings from Burkina Faso underline the importance of gender-sensitive health workforce planning. The training that all levels of MNH providers receive in professional ethics, and the way this is reinforced in practice require closer attention. The differences in the findings across the three settings underscore the importance of in-depth country-level research to tailor the development of incentives schemes

    Evolution of vertebral numbers in primates, with a focus on hominoids and the last common ancestor of hominins and panins

    Get PDF
    The primate vertebral column has been extensively studied, with a particular focus on hominoid primates and the last common ancestor of humans and chimpanzees. The number of vertebrae in hominoids—up to and including the last common ancestor of humans and chimpanzees—is subject to considerable debate. However, few formal ancestral state reconstructions exist, and none include a broad sample of primates or account for the correlated evolution of the vertebral column. Here, we conduct an ancestral state reconstruction using a model of evolution that accounts for both homeotic (changes of one type of vertebra to another) and meristic (addition or loss of a vertebra) changes. Our results suggest that ancestral primates were characterized by 29 precaudal vertebrae, with the most common formula being seven cervical, 13 thoracic, six lumbar, and three sacral vertebrae. Extant hominoids evolved tail loss and a reduced lumbar column via sacralization (homeotic transition at the last lumbar vertebra). Our results also indicate that the ancestral hylobatid had seven cervical, 13 thoracic, five lumbar, and four sacral vertebrae, and the ancestral hominid had seven cervical, 13 thoracic, four lumbar, and five sacral vertebrae. The last common ancestor of humans and chimpanzees likely either retained this ancestral hominid formula or was characterized by an additional sacral vertebra, possibly acquired through a homeotic shift at the sacrococcygeal border. Our results support the ‘short-back’ model of hominin vertebral evolution, which postulates that hominins evolved from an ancestor with an African ape–like numerical composition of the vertebral column

    Acquiring a pet dog significantly reduces stress of primary carers for children with autism spectrum disorder: a prospective case control study

    Get PDF
    This study describes the impact of pet dogs on stress of primary carers of children with Autism Spectrum Disorder (ASD). Stress levels of 38 primary carers acquiring a dog and 24 controls not acquiring a dog were sampled at: Pre-intervention (17 weeks before acquiring a dog), post-intervention (3–10 weeks after acquisition) and follow-up (25–40 weeks after acquisition), using the Parenting Stress Index. Analysis revealed significant improvements in the intervention compared to the control group for Total Stress, Parental Distress and Difficult Child. A significant number of parents in the intervention group moved from clinically high to normal levels of Parental Distress. The results highlight the potential of pet dogs to reduce stress in primary carers of children with an ASD

    On the Role of the Striatum in Response Inhibition

    Get PDF
    BACKGROUND: Stopping a manual response requires suppression of the primary motor cortex (M1) and has been linked to activation of the striatum. Here, we test three hypotheses regarding the role of the striatum in stopping: striatum activation during successful stopping may reflect suppression of M1, anticipation of a stop-signal occurring, or a slower response build-up. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-four healthy volunteers underwent functional magnetic resonance imaging (fMRI) while performing a stop-signal paradigm, in which anticipation of stopping was manipulated using a visual cue indicating stop-signal probability, with their right hand. We observed activation of the striatum and deactivation of left M1 during successful versus unsuccessful stopping. In addition, striatum activation was proportional to the degree of left M1 deactivation during successful stopping, implicating the striatum in response suppression. Furthermore, striatum activation increased as a function of stop-signal probability and was to linked to activation in the supplementary motor complex (SMC) and right inferior frontal cortex (rIFC) during successful stopping, suggesting a role in anticipation of stopping. Finally, trial-to-trial variations in response time did not affect striatum activation. CONCLUSIONS/SIGNIFICANCE: The results identify the striatum as a critical node in the neural network associated with stopping motor responses. As striatum activation was related to both suppression of M1 and anticipation of a stop-signal occurring, these findings suggest that the striatum is involved in proactive inhibitory control over M1, most likely in interaction with SMC and rIFC

    High-quality health systems in the Sustainable Development Goals era: time for a revolution.

    Get PDF
    Executive summary: Although health outcomes have improved in low-income and middle-income countries (LMICs) in the past several decades, a new reality is at hand. Changing health needs, growing public expectations, and ambitious new health goals are raising the bar for health systems to produce better health outcomes and greater social value. But staying on current trajectory will not suffice to meet these demands. What is needed are high-quality health systems that optimise health care in each given context by consistently delivering care that improves or maintains health, by being valued and trusted by all people, and by responding to changing population needs. Quality should not be the purview of the elite or an aspiration for some distant future; it should be the DNA of all health systems. Furthermore, the human right to health is meaningless without good quality care because health systems cannot improve health without it. We propose that health systems be judged primarily on their impacts, including better health and its equitable distribution; on the confidence of people in their health system; and on their economic benefit, and processes of care, consisting of competent care and positive user experience. The foundations of high-quality health systems include the population and their health needs and expectations, governance of the health sector and partnerships across sectors, platforms for care delivery, workforce numbers and skills, and tools and resources, from medicines to data. In addition to strong foundations, health systems need to develop the capacity to measure and use data to learn. High-quality health systems should be informed by four values: they are for people, and they are equitable, resilient, and efficient. For this Commission, we examined the literature, analysed surveys, and did qualitative and quantitative research to evaluate the quality of care available to people in LMICs across a range of health needs included in the Sustainable Development Goals (SDGs). We explored the ethical dimensions of high-quality care in resource-constrained settings and reviewed available measures and improvement approaches. We reached five conclusions: The care that people receive is often inadequate, and poor-quality care is common across conditions and countries, with the most vulnerable populations faring the worst Data from a range of countries and conditions show systematic deficits in quality of care. In LMICs, mothers and children receive less than half of recommended clinical actions in a typical preventive or curative visit, less than half of suspected cases of tuberculosis are correctly managed, and fewer than one in ten people diagnosed with major depressive disorder receive minimally adequate treatment. Diagnoses are frequently incorrect for serious conditions, such as pneumonia, myocardial infarction, and newborn asphyxia. Care can be too slow for conditions that require timely action, reducing chances of survival. At the system level, we found major gaps in safety, prevention, integration, and continuity, reflected by poor patient retention and insufficient coordination across platforms of care. One in three people across LMICs cited negative experiences with their health system in the areas of attention, respect, communication, and length of visit (visits of 5 min are common); on the extreme end of these experiences were disrespectful treatment and abuse. Quality of care is worst for vulnerable groups, including the poor, the less educated, adolescents, those with stigmatised conditions, and those at the edges of health systems, such as people in prisons. Universal health coverage (UHC) can be a starting point for improving the quality of health systems. Improving quality should be a core component of UHC initiatives, alongside expanding coverage and financial protection. Governments should start by establishing a national quality guarantee for health services, specifying the level of competence and user experience that people can expect. To ensure that all people will benefit from improved services, expansion should prioritise the poor and their health needs from the start. Progress on UHC should be measured through effective (quality-corrected) coverage. High-quality health systems could save over 8 million lives each year in LMICs More than 8 million people per year in LMICs die from conditions that should be treatable by the health system. In 2015 alone, these deaths resulted in US$6 trillion in economic losses. Poor-quality care is now a bigger barrier to reducing mortality than insufficient access. 60% of deaths from conditions amenable to health care are due to poor-quality care, whereas the remaining deaths result from non-utilisation of the health system. High-quality health systems could prevent 2·5 million deaths from cardiovascular disease, 1 million newborn deaths, 900 000 deaths from tuberculosis, and half of all maternal deaths each year. Quality of care will become an even larger driver of population health as utilisation of health systems increases and as the burden of disease shifts to more complex conditions. The high mortality rates in LMICs for treatable causes, such as injuries and surgical conditions, maternal and newborn complications, cardiovascular disease, and vaccine preventable diseases, illustrate the breadth and depth of the health-care quality challenge. Poor-quality care can lead to other adverse outcomes, including unnecessary health-related suffering, persistent symptoms, loss of function, and a lack of trust and confidence in health systems. Waste of resources and catastrophic expenditures are economic side effects of poor-quality health systems. As a result of this, only one-quarter of people in LMICs believe that their health systems work well. Health systems should measure and report what matters most to people, such as competent care, user experience, health outcomes, and confidence in the system Measurement is key to accountability and improvement, but available measures do not capture many of the processes and outcomes that matter most to people. At the same time, data systems generate many metrics that produce inadequate insight at a substantial cost in funds and health workers' time. For example, although inputs such as medicines and equipment are commonly counted in surveys, these are weakly related to the quality of care that people receive. Indicators such as proportion of births with skilled attendants do not reflect quality of childbirth care and might lead to false complacency about progress in maternal and newborn health. This Commission calls for fewer, but better, measures of health system quality to be generated and used at national and subnational levels. Countries should report health system performance to the public annually by use of a dashboard of key metrics (eg, health outcomes, people's confidence in the system, system competence, and user experience) along with measures of financial protection and equity. Robust vital registries and trustworthy routine health information systems are prerequisites for good performance assessment. Countries need agile new surveys and real-time measures of health facilities and populations that reflect the health systems of today and not those of the past. To generate and interpret data, countries need to invest in national institutions and professionals with strong quantitative and analytical skills. Global development partners can support the generation and testing of public goods for health system measurement (civil and vital registries, routine data systems, and routine health system surveys) and promote national and regional institutions and the training and mentoring of scientists. New research is crucial for the transformation of low-quality health systems to high-quality ones Data on care quality in LMICs do not reflect the current disease burden. In many of these countries, we know little about quality of care for respiratory diseases, cancer, mental health, injuries, and surgery, as well as the care of adolescents and elderly people. There are vast blind spots in areas such as user experience, system competence, confidence in the system, and the wellbeing of people, including patient-reported outcomes. Measuring the quality of the health system as a whole and across the care continuum is essential, but not done. Filling in these gaps will require not only better routine health information systems for monitoring, but also new research, as proposed in the research agenda of this Commission. For example, research will be needed to rigorously evaluate the effects and costs of recommended improvement approaches on health, patient experience, and financial protection. Implementation science studies can help discern the contextual factors that promote or hinder reform. New data collection and research should be explicitly designed to build national and regional research capacity. Improving quality of care will require system-wide action To address the scale and range of quality deficits we documented in this Commission, reforming the foundations of the health system is required. Because health systems are complex adaptive systems that function at multiple interconnected levels, fixes at the micro-level (ie, health-care provider or clinic) alone are unlikely to alter the underlying performance of the whole system. However, we found that interventions aimed at changing provider behaviour dominate the improvement field, even though many of these interventions have a modest effect on provider performance and are difficult to scale and sustain over time. Achieving high-quality health systems requires expanding the space for improvement to structural reforms that act on the foundations of the system. This Commission endorses four universal actions to raise quality across the health system. First, health system leaders need to govern for quality by adopting a shared vision of quality care, a clear quality strategy, strong regulation, and continuous learning. Ministries of health cannot accomplish this alone and need to partner with the private sector, civil society, and sectors outside of health care, such as education, infrastructure, communication, and transport. Second, countries should redesign service delivery to maximise health outcomes rather than geographical access to services alone. Primary care could tackle a greater range of low-acuity conditions, whereas hospitals or specialised health centres should provide care for conditions, such as births, that need advanced clinical expertise or have the risk of unexpected complications. Third, countries should transform the health workforce by adopting competency-based clinical education, introducing training in ethics and respectful care, and better supporting and respecting all workers to deliver the best care possible. Fourth, governments and civil society should ignite demand for quality in the population to empower people to hold systems accountable and actively seek high-quality care. Additional targeted actions in areas such as health financing, management, district-level learning, and others can complement these efforts. What works in one setting might not work elsewhere, and improvement efforts should be adapted for local context and monitored. Funders should align their support with system-wide strategies rather than contribute to the proliferation of micro-level efforts. In this Commission, we assert that providing health services without guaranteeing a minimum level of quality is ineffective, wasteful, and unethical. Moving to a high-quality health system—one that improves health and generates confidence and economic benefits—is primarily a political, not technical, decision. National governments need to invest in high-quality health systems for their own people and make such systems accountable to people through legislation, education about rights, regulation, transparency, and greater public participation. Countries will know that they are on the way towards a high-quality, accountable health system when health workers and policymakers choose to receive health care in their own public institutions.Fil: Kruk, Margaret E.. Harvard University. Harvard School of Public Health; Estados UnidosFil: Gage, Anna D.. Harvard University. Harvard School of Public Health; Estados UnidosFil: Arsenault, Catherine. Harvard University. Harvard School of Public Health; Estados UnidosFil: Jordan, Keely. New York College of Global Public Health; Estados UnidosFil: Leslie, Hannah H.. Harvard University. Harvard School of Public Health; Estados UnidosFil: Roder DeWan, Sanam. Harvard University. Harvard School of Public Health; Estados UnidosFil: Adeyi, Olusoji. Banco Mundial; Estados UnidosFil: Barker, Pierre. Institute For Healthcare Improvement; Estados UnidosFil: Daelmans, Bernadette. Organizacion Mundial de la Salud; SuizaFil: Doubova, Svetlana V.. Instituto Mexicano del Seguro Social; MéxicoFil: English, Mike. KEMRI - Wellcome Trust; KeniaFil: Garcia Elorrio, Ezequiel. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guanais, Frederico. Banco Interamericano de Desarrollo; Estados UnidosFil: Gureje, Oye. University Of Ibadan; NigeriaFil: Hirschhorn, Lisa R.. Northwestern University; Estados UnidosFil: Jiang, Lixin. National Center For Cardiovascular Diseases; ChinaFil: Kelley, Edward. Organizacion Mundial de la Salud; SuizaFil: Lemango, Ephrem Tekle. Federal Ministry of Health; EtiopíaFil: Liljestrand, Jerker. Bill and Melinda Gates Foundation; Estados UnidosFil: Malata, Address. Malawi University Of Science And Technology; MalauiFil: Marchant, Tanya. London School of Hygiene & Tropical Medicine; Reino UnidoFil: Matsoso, Malebona Precious. National Department of Health of the Republic of South Africa; SudáfricaFil: Meara, John G.. Harvard Medical School; Estados UnidosFil: Mohanan, Manoj. University of Duke; Estados UnidosFil: Ndiaye, Youssoupha. Ministry of Health and Social Action of the Republic of Senegal; SenegalFil: Norheim, Ole F.. University of Bergen; NoruegaFil: Reddy, K. Srinath. Public Health Foundation of India; IndiaFil: Rowe, Alexander K.. Centers for Disease Control and Prevention; Estados UnidosFil: Salomon, Joshua A.. Stanford University School Of Medicine; Estados UnidosFil: Thapa, Gagan. Legislature Parliament Of Nepal; NepalFil: Twum Danso, Nana A. Y.. Maza; GhanaFil: Pate, Muhammad. Big Win Philanthropy; Reino Unid

    FMR1 premutation and full mutation molecular mechanisms related to autism

    Get PDF
    Fragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5′ un-translated portion of the fragile X mental retardation 1 gene (FMR1) leading to a deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA-binding protein that regulates the translation of a number of other genes that are important for synaptic development and plasticity. Furthermore, many of these genes, when mutated, have been linked to autism in the general population, which may explain the high comorbidity that exists between FXS and autism spectrum disorders (ASD). Additionally, premutation repeat expansions (55 to 200 CGG repeats) may also give rise to ASD through a different molecular mechanism that involves a direct toxic effect of FMR1 mRNA. It is believed that RNA toxicity underlies much of the premutation-related involvement, including developmental concerns like autism, as well as neurodegenerative issues with aging such as the fragile X-associated tremor ataxia syndrome (FXTAS). RNA toxicity can also lead to mitochondrial dysfunction, which is common in older premutation carriers both with and without FXTAS. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in idiopathic autism. Research regarding dysregulation of neurotransmitter systems caused by the lack of FMRP in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABA pathways, has led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism
    • …
    corecore