20 research outputs found

    Prevalence Of Parafunctional Habits And Temporomandibular Disorder Symptoms In Young Individuals Reporting To Watim Dental Hospital

    Get PDF
    Objective: This study aims to identify the prevalence of parafunctional habits and common symptoms of temporomandibular disorders in young individuals reporting to the Watim Dental College Materials and methods: This cross-sectional study was carried out by a survey and clinical examination over a period of six months from September 2021 to February 2022. Data from 103 patients, who fulfilled the inclusion criteria, were collected using a structured questionnaire and clinical examination regarding their parafunctional habits and temporomandibular joint symptoms. Informed consent was filled out by all the participants. Data were analyzed using SPSS version 23. A descriptive analysis was calculated for both quantitative and qualitative variables. Results: The prevalence of oral parafunctional habits among the study sample was quantified on a binary scale (yes/no) where nail-biting was observed to be highly prevalent (38%), followed by mouth breathing (27%). The most frequently reported temporomandibular joint symptom was noise (clicking or crepitation)  which was 66%. Difficulty in mouth opening was the least common (20%) of all the symptoms noted. Conclusion: It may be concluded from our study that amongst parafunctional habits nail biting is the most common habit amongst young individuals and amongst the temporomandibular joint disorder clicking and crepitation is the most common symptom persistent with the condition. Keywords: clicking, nail-biting, parafunctional habits, temporomandibular joint symptom

    Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils A global meta-analysis

    Get PDF
    Agricultural lands, because of their large area and exhaustive management practices, have a substantial impact on the earth's carbon and nitrogen cycles, and agricultural activities consequence in discharges of greenhouse gases (GHGs). Globally, greenhouse gases (GHGs) emissions especially carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the agricultural sector are increasing due to anthropogenic activities. Although, the application of animal manure to the agricultural soil as an organic fertilizer not only improves soil health and agricultural production but also has a significant impact on GHGs emissions. But the extent of GHGs emissions in response to manure application under diverse environmental conditions is still uncertain. Here, a meta-analysis study was conducted using field data (48 peer-reviewed publications) published from 1989 to 2019. Meta-analysis results showed that poultry manure considerably increased CO2, CH4, and N2O emissions than pig and cattle manure. Furthermore, application of poultry manure also increased (¯(〖lnRR〗^ ) =0.141, 95% CI =0.526-0.356) GWP (global warming potential) of total soil GHGs emissions. While, the significant effects on CO2, CH4, and N2O emissions also occurred at manure rate > 320 kg N ha-1 and > 60% water filled pore space. The maximum concentrations of CO2, CH4, and N2O emissions were observed in neutral soils (¯(〖lnRR〗^ ) =3.375, 95% CI =3.323-3.428), alkaline soils (¯(〖lnRR〗^ ) =1.468, 95% CI =1.403-1.532), and acidic soils (¯(〖lnRR〗^ ) =2.355, 95% CI =2.390-2.400), respectively. Soil texture, climate zone and crop type were also found significant factors to increase GHGs emissions. Thus, this meta-analysis revealed a knowledge gap concerning the consequences of animal manure application and rate, climate zone, and physicochemical properties of soil on GHGs emissions from agricultural soils.Awais Shakoor would like to express his gratitude for the grant provided by the University of Lleida, Spain. The authors would like to appreciate the valuable comments from the editors and anonymous reviewers to improve the quality of this study

    Screening of the LAMB2, WT1, NPHS1, and NPHS2 Genes in Pediatric Nephrotic Syndrome

    Get PDF
    Mutations in the NPHS1, NPHS2, LAMB2, and the WT1 genes are responsible for causing nephrotic syndrome (NS) in two third of the early onset cases. This study was carried out to assess the frequencies of mutations in these genes in a cohort of pediatric NS patients. A total of 64 pediatric familial or sporadic SRNS cases were recruited. Among these, 74% had a disease onset of up to 3 years of age. We found one homozygous frameshift mutation in the NPHS1 gene in one CNS case and two homozygous mutations in the NPHS2 gene. Six mutations in four cases in the LAMB2 gene were also identified. No mutation was detected in the WT1 gene in isolated SRNS cases. LAMB2 gene missense mutations were segregating in NS cases with no extra-renal abnormalities. Analysis of the population genomic data (1000 genome and gnomAD databases) for the prevalence estimation revealed that NS is more prevalent than previously determined from clinical cohorts especially in Asian population compared with overall world populations (prevalence worldwide was 1in 189036 and in South-Asian was 1in 56689). Our results reiterated a low prevalence of mutations in the NPHS1, NPHS2, LAMB2, and WT1 genes in the studied population from Pakistan as compared to some European population that showed a high prevalence of mutations in these genes. This is a comprehensive screening of the genes causing early onset NS in sporadic and familial NS cases suggesting a more systematic and robust approach for mutation identification in all the 45 disease-causing genes in NS in our population is required

    In vitro and in vivo evaluation of different measures to control Ascochyta blight in chickpea

    Get PDF
    Ascochyta blight, an infection caused by Ascochyta rabiei is a destructive disease in many chickpea growing regions and it caused significant yield losses. To minimize the impact of Ascochyta blight, 5 fungicides viz., Aliette, Cabrio Top, Thiovit Jet, Cymoxanil and Difenoconazole, 5 plants extracts namely Azadirachta indica, Azadirachta azedarach, Datura stramonium, Chenopodium album and Allium sativum L. and two strains T-22 and E58 of bio-control agents (BCAs) Trichoderma viride and Aspergillus flavus were evaluated on the growth of A. rabiei under in vitro conditions by using the food poison technique. The colony growth of Ascochyta rabiei was inhibited at all concentrations of fungicides @ 0.07, 0.15, 0.21%, plants extracts @ 4, 6, 9% and bio-control agents @ 105, 106 and 107 conidia ml-1 respectively. Among all applied treatments, maximum inhibition colony growth of pathogen was recorded in the case of Aliette (83.4%), followed by Cabrio Top (74.3%), Azadirachta indica (50.3%) and Trichoderma viride (60.3%) at their high concentrations. Field trials showed that Aliette and Cabario Top significantly reduced the disease severity to 10 % and 24% respectively, followed by Azadirachta indica and Allium sativum which reduced the disease severity to 40% and 50% respectively. Bio-control agent Trichoderma viride proved less effective in controlling Ascochyta bight severity under field conditions. The present study showed that systemic and sulphur containing fungicides, plant extracts and bio-control agents (BCAs) have the potential to control Ascochyta blight in both in vitro and in vivo conditions

    Setting a baseline for global urban virome surveillance in sewage

    Get PDF
    The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective

    Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

    Get PDF
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use meta-genomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.Peer reviewe

    Setting a baseline for global urban virome surveillance in sewage

    Get PDF
    The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing

    No full text
    Carbon dioxide (CO2) is mainly universal greenhouse gas associated with climate change. However, beyond CO2, some other greenhouse gases (GHGs) like methane (CH4) and nitrous oxide (N2O), being two notable gases, contribute to global warming. Since 1900, the concentrations of CO2 and non-CO2 GHG emissions have been elevating, and due to the effects of the previous industrial revolution which is responsible for climate forcing. Globally, emissions of CO2, CH4, and N2O from agricultural sectors are increasing as around 1% annually. Moreover, deforestation also contributes 12–17% of total global GHGs. Perhaps, the average temperature is likely to increase globally, at least 2 °C by 2100—by mid-century. These circumstances are responsible for climate forcing, which is the source of various human health diseases and environmental risks. From agricultural soils, rhizospheric microbial communities have a significant role in the emissions of greenhouse gases. Every year, microbial communities release approximately 1.5–3 billion tons of carbon into the atmospheric environment. Microbial nitrification, denitrification, and respiration are the essential processes that affect the nitrogen cycle in the terrestrial environment. In the twenty-first century, climate change is the major threat faced by human beings. Climate change adversely influences human health to cause numerous diseases due to their direct association with climate change. This review highlights the different anthropogenic GHG emission sources, the response of microbial communities to climate change, climate forcing potential, and mitigation strategies through different agricultural management approaches and microbial communities

    Influence of Adding Different Fillers on Polyethylene Properties

    No full text
    The aim of this study was focused on the improvement of pouring, mechanical and thermal properties of high density polyethylene using chemically treated kawaline as a filler which is composed of 10% carbamide and 90% kawaline. A composed had been made among the new filler (kawaline-carbamide), alumina and the pure kawaline in improving the latter properties of polyethylene. It was found that all the mentioned properties affect deeply by filler type and its content. Also it was found that the suitable filler is alumina and kawaline –carrbamide in less performance
    corecore