1,040 research outputs found
Molecular Bremsstrahlung Radiation at GHz Frequencies in Air
A detection technique for ultra-high energy cosmic rays, complementary to the
fluorescence technique, would be the use of the molecular Bremsstrahlung
radiation emitted by low-energy ionization electrons left after the passage of
the showers in the atmosphere. In this article, a detailed estimate of the
spectral intensity of photons at ground level originating from this radiation
is presented. The spectral intensity expected from the passage of the
high-energy electrons of the cascade is also estimated. The absorption of the
photons in the plasma of electrons/neutral molecules is shown to be negligible.
The obtained spectral intensity is shown to be W cm
GHz at 10 km from the shower core for a vertical shower induced by a
proton of eV. In addition, a recent measurement of Bremsstrahlung
radiation in air at gigahertz frequencies from a beam of electrons produced at
95 keV by an electron gun is also discussed and reasonably reproduced by the
model.Comment: 20 pages, 9 figures, figures (2,4,7) improved in v2, accepted by
Phys. Rev.
The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers
The AMY experiment aims to measure the microwave bremsstrahlung radiation
(MBR) emitted by air-showers secondary electrons accelerating in collisions
with neutral molecules of the atmosphere. The measurements are performed using
a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN
National Laboratories. The goal of the AMY experiment is to measure in
laboratory conditions the yield and the spectrum of the GHz emission in the
frequency range between 1 and 20 GHz. The final purpose is to characterise the
process to be used in a next generation detectors of ultra-high energy cosmic
rays. A description of the experimental setup and the first results are
presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High
Energy Physics (July, 18-24, 2013) at Stockholm, Swede
Development of a quality assurance process for the SoLid experiment
The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCK circle CEN, in Belgium.
The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with (LiF)-Li-6:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around O(10)% in the energy spectrum of reactor (v) over bare. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50% respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed. CALIPSO provides precise, automatic placement of radioactive sources in front of each cube of a given detector plane (16 x 16 cubes). A combination of Na-22, Cf-252 and AmBe gamma and neutron sources were used by CALIPSO during the quality assurance process. Initially, the scanning identified defective components allowing for repair during initial construction of the SoLid detector. Secondly, a full analysis of the calibration data revealed initial estimations for the light yield of over 60 PA/MeV and neutron reconstruction efficiency of 68%, validating the SoLid physics requirements
Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB
We present results of a dark matter search performed with a 0.6 kg day
exposure of the DAMIC experiment at the SNOLAB underground laboratory. We
measure the energy spectrum of ionization events in the bulk silicon of
charge-coupled devices down to a signal of 60 eV electron equivalent. The data
are consistent with radiogenic backgrounds, and constraints on the
spin-independent WIMP-nucleon elastic-scattering cross section are accordingly
placed. A region of parameter space relevant to the potential signal from the
CDMS-II Si experiment is excluded using the same target for the first time.
This result obtained with a limited exposure demonstrates the potential to
explore the low-mass WIMP region (<10 GeV/) of the upcoming DAMIC100, a
100 g detector currently being installed in SNOLAB.Comment: 11 pages, 11 figure
Sampling protein motion and solvent effect during ligand binding.
An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one
Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
Context. Recently, the high-energy (HE, 0.1-100 GeV) -ray emission
from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered
to be modulated with a 10.3-day period, making it the first extra-galactic
-ray binary.
Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV)
-ray emission and the search for modulation of the VHE signal with the
orbital period of the binary system.
Methods. LMC P3 has been observed with the High Energy Stereoscopic System
(H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has
been folded with the known orbital period of the system in order to test for
variability of the emission. Energy spectra are obtained for the orbit-averaged
data set, and for the orbital phase bin around the VHE maximum.
Results. VHE -ray emission is detected with a statistical
significance of 6.4 . The data clearly show variability which is
phase-locked to the orbital period of the system. Periodicity cannot be deduced
from the H.E.S.S. data set alone. The orbit-averaged luminosity in the
TeV energy range is erg/s. A luminosity of erg/s is reached during 20% of the orbit. HE and VHE
-ray emissions are anti-correlated. LMC P3 is the most luminous
-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
- …
