115 research outputs found

    Molecular characterization and genogrouping of VP1 of aquatic birnavirus GC1 isolated from rockfish Sebastes schlegeli in Korea

    Get PDF
    The cDNA nucleotide sequence of genome segment B encoding the VP1 protein was determined for the aquatic birnavirus GC1 isolated from the rockfish Sebastes schlegeli in Korea. The VP1 protein of GC1 contains a 2,538 bp open reading frame, which encodes a protein comprising 846 amino acid residues that has a predicted MW of 94 kDa. The sequence contains 6 potential Asn-X-Ser/Thr motifs. Eight potential Ser phosphorylation sites and 1 potential Tyr phophorylation site were also identified. GC1 contains the Leu-Lys-Asn (LKN) motif instead of the typical Gly-Asp-Asp (GDD) motif found in other aquatic birnaviruses. We also identified the GLPYIGKT motif, the putative GTP-binding site at amino acid position 248. In total, the VP1 regions of 22 birnavirus strains were compared for analyzing the genetic relationship among the family Birnaviridae. Based on the deduced amino acid sequences, GC1 was observed to be more closely related to the infectious pancreatic necrosis virus (IPNV) from the USA, Japan, and Korea than the IPNV from Europe. Further, aquatic birnaviruses containing GC1 and IPNV have genogroups that are distinct from those in the genus Avibirnaviruses and Entomo-birnaviruses. The birnavirusstrains were clustered into 5 genogroups based on their amino acid sequences. The marine aquatic birnaviruses (MABVs) containing GC1 were included in the MABV genogroup; the IPNV strains isolated from Korea, Japan, and the USA were included in genogroup 1 and the IPNV strains isolated primarily from Europe were included in genogroup 2. Avibirnaviruses and entomobirnaviruses were included in genogroup 3 and 4, respectively

    Optical Properties of III-Mn-V Ferromagnetic Semiconductors

    Full text link
    We review the first decade of extensive optical studies of ferromagnetic, III-Mn-V diluted magnetic semiconductors. Mn introduces holes and local moments to the III-V host, which can result in carrier mediated ferromagnetism in these disordered semiconductors. Spectroscopic experiments provide direct access to the strength and nature of the exchange between holes and local moments; the degree of itineracy of the carriers; and the evolution of the states at the Fermi energy with doping. Taken together, diversity of optical methods reveal that Mn is an unconventional dopant, in that the metal to insulator transition is governed by the strength of the hybridization between Mn and its p-nictogen neighbor. The interplay between the optical, electronic and magnetic properties of III-Mn-V magnetic semiconductors is of fundamental interest and may enable future spin-optoelectronic devices.Comment: Topical Revie

    Influence of Negative-Pressure Wound Therapy on Tissue Oxygenation of the Foot

    No full text
    Background Negative-pressure wound therapy (NPWT) is believed to accelerate wound healing by altering wound microvascular blood flow. Although many studies using laser Doppler have found that NPWT increases perfusion, recent work using other modalities has demonstrated that perfusion is reduced. The purpose of this study was to investigate the influence of NPWT on tissue oxygenation of the foot, which is the most sensitive region of the body to ischemia. Methods Transcutaneous partial pressure of oxygen (TcpO2) was used to determine perfusion beneath NPWT dressings of 10 healthy feet. The sensor was placed on the tarso-metatarsal area of the foot and the NPWT dressing was placed above the sensor. TcpO2 was measured until it reached a steady plateau state. The readings obtained at the suction-on period were compared with the initial baseline (pre-suction) readings. Results TcpO2 decreased significantly immediately after applying NPWT, but gradually increased over time until reaching a steady plateau state. The decrease in TcpO2 from baseline to the steady state was 2.9 to 13.9 mm Hg (mean, 9.3±3.6 mm Hg; 13.5±5.8%; P<0.01). All feet reached a plateau within 20 to 65 minutes after suction was applied. Conclusions NPWT significantly decrease tissue oxygenation of the foot by 2.9 to 13.9 mm Hg. NPWT should be used with caution on feet that do not have adequate tissue oxygenation for wound healing
    corecore