62 research outputs found

    Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion

    Get PDF
    BACKGROUND: Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene. RESULTS: We show here that, based on their distribution in cDNA libraries, Talin-a and Talin-b are differentially expressed during C. intestinalis development. The I/LWEQ modules of the two proteins also have different affinities for F-actin. Consistent with the hypothesis that Talin-a and Talin-b have different roles in cell adhesion, the distinct I/LWEQ modules of Talin-a and Talin-b possess different subcellular targeting determinants. The I/LWEQ module of Talin-a is targeted to focal adhesions, where it most likely serves as the link between integrin and the actin cytoskeleton. The Talin-b I/LWEQ module is not targeted to focal adhesions, but instead preferentially labels F-actin stress fibers. These different properties of C. intestinalis the Talin-a and Talin-b I/LWEQ modules mimic the differences between mammalian Talin1 and Talin2. CONCLUSION: Vertebrates and D. discoideum contain two talin genes that encode proteins with different functions. The urochordate C. intestinalis has a single talin gene but produces two separate talins by alternative splicing that vary in a domain crucial for talin function. This suggests that multicellular organisms require multiple talins as components of adhesion complexes. In C. intestinalis, alternative splicing, rather than gene duplication followed by neo-functionalization, accounts for the presence of multiple talins with different properties. Given that C. intestinalis is an excellent model system for chordate biology, the study of Talin-a and Talin-b will lead to a deeper understanding of cell adhesion in the chordate lineage and how talin functions have been parceled out to multiple proteins during metazoan evolution

    Structural and biophysical properties of the integrin-associated cytoskeletal protein talin

    Get PDF
    Talin is a large cytoskeletal protein (2541 amino acid residues) which plays a key role in integrin-mediated events that are crucial for cell adhesion, migration, proliferation and survival. This review summarises recent work on the structure of talin and on some of the structurally better defined interactions with other proteins. The N-terminal talin head (approx. 50 kDa) consists of an atypical FERM domain linked to a long flexible rod (approx. 220 kDa) made up of a series of amphipathic helical bundle domains. The F3 FERM subdomain in the head binds the cytoplasmic tail of integrins, but this interaction can be inhibited by an interaction of F3 with a helical bundle in the talin rod, the so-called “autoinhibited form” of the molecule. The talin rod contains a second integrin-binding site, at least two actin-binding sites and a large number of binding sites for vinculin, which is important in reinforcing the initial integrin–actin link mediated by talin. The vinculin binding sites are defined by hydrophobic residues buried within helical bundles, and these must unfold to allow vinculin binding. Recent experiments suggest that this unfolding may be mediated by mechanical force exerted on the talin molecule by actomyosin contraction

    The structure of the C-terminal actin-binding domain of talin

    Get PDF
    Talin is a large dimeric protein that couples integrins to cytoskeletal actin. Here, we report the structure of the C-terminal actin-binding domain of talin, the core of which is a five-helix bundle linked to a C-terminal helix responsible for dimerisation. The NMR structure of the bundle reveals a conserved surface-exposed hydrophobic patch surrounded by positively charged groups. We have mapped the actin-binding site to this surface and shown that helix 1 on the opposite side of the bundle negatively regulates actin binding. The crystal structure of the dimerisation helix reveals an antiparallel coiled-coil with conserved residues clustered on the solvent-exposed face. Mutagenesis shows that dimerisation is essential for filamentous actin (F-actin) binding and indicates that the dimerisation helix itself contributes to binding. We have used these structures together with small angle X-ray scattering to derive a model of the entire domain. Electron microscopy provides direct evidence for binding of the dimer to F-actin and indicates that it binds to three monomers along the long-pitch helix of the actin filament

    Adhesions Assemble!—Autoinhibition as a Major Regulatory Mechanism of Integrin-Mediated Adhesion

    Get PDF
    The advent of cell-cell and cell-extracellular adhesion enabled cells to interact in a coherent manner, forming larger structures and giving rise to the development of tissues, organs and complex multicellular life forms. The development of such organisms required tight regulation of dynamic adhesive structures by signaling pathways that coordinate cell attachment. Integrin-mediated adhesion to the extracellular matrix provides cells with support, survival signals and context-dependent cues that enable cells to run different cellular programs. One mysterious aspect of the process is how hundreds of proteins assemble seemingly spontaneously onto the activated integrin. An emerging concept is that adhesion assembly is regulated by autoinhibition of key proteins, a highly dynamic event that is modulated by a variety of signaling events. By enabling precise control of the activation state of proteins, autoinhibition enables localization of inactive proteins and the formation of pre-complexes. In response to the correct signals, these proteins become active and interact with other proteins, ultimately leading to development of cell-matrix junctions. Autoinhibition of key components of such adhesion complexes—including core components integrin, talin, vinculin, and FAK and important peripheral regulators such as RIAM, Src, and DLC1—leads to a view that the majority of proteins involved in complex assembly might be regulated by intramolecular interactions. Autoinhibition is relieved via multiple different signals including post-translation modification and proteolysis. More recently, mechanical forces have been shown to stabilize and increase the lifetimes of active conformations, identifying autoinhibition as a means of encoding mechanosensitivity. The complexity and scope for nuanced adhesion dynamics facilitated via autoinhibition provides numerous points of regulation. In this review, we discuss what is known about this mode of regulation and how it leads to rapid and tightly controlled assembly and disassembly of cell-matrix adhesion

    Talin2-mediated traction force drives matrix degradation and cell invasion

    Get PDF
    Talin binds to ?-integrin tails to activate integrins, regulating cell migration, invasion and metastasis. There are two talin genes, TLN1 and TLN2, encoding talin1 and talin2, respectively. Talin1 regulates focal adhesion dynamics, cell migration and invasion, whereas the biological function of talin2 is not clear and, indeed, talin2 has been presumed to function redundantly with talin1. Here, we show that talin2 has a much stronger binding to ?-integrin tails than talin1. Replacement of talin2 Ser339 with Cys significantly decreased its binding to ?1-integrin tails to a level comparable to that of talin1. Talin2 localizes at invadopodia and is indispensable for the generation of traction force and invadopodium-mediated matrix degradation. Ablation of talin2 suppressed traction force generation and invadopodia formation, which were restored by re-expressing talin2 but not talin1. Furthermore, re-expression of wild-type talin2 (but not talin2S339C) in talin2-depleted cells rescued development of traction force and invadopodia. These results suggest that a strong interaction of talin2 with integrins is required to generate traction, which in turn drives invadopodium-mediated matrix degradation, which is key to cancer cell invasion

    The tale of two talins – two isoforms to fine-tune integrin signalling

    Get PDF
    Talins are cytoplasmic adapter proteins essential for integrin-mediated cell adhesion to the extracellular matrix. Talins control the activation state of integrins, link integrins to cytoskeletal actin, recruit numerous signalling molecules that mediate integrin signalling, and coordinate recruitment of microtubules to adhesion sites via interaction with KANK (kidney ankyrin repeat- containing) proteins. Vertebrates have two talin genes, TLN1 and TLN2. Although talin1 and talin2 share 76% protein sequence identity (88% similarity), they are not functionally redundant, and the differences between the two isoforms are not fully understood. In this Review, we focus on the similarities and differences between the two talins in terms of structure, biochemistry and function, which hint at subtle differences in fine-tuning adhesion signalling

    Integrins promote axonal regeneration after injury of the nervous system.

    Get PDF
    Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system

    Talin as a mechanosensitive signaling hub

    Get PDF
    Cell adhesion to the extracellular matrix (ECM), mediated by transmembrane receptors of the integrin family, is exquisitely sensitive to biochemical, structural, and mechanical features of the ECM. Talin is a cytoplasmic protein consisting of a globular head domain and a series of ?-helical bundles that form its long rod domain. Talin binds to the cytoplasmic domain of integrin ?-subunits, activates integrins, couples them to the actin cytoskeleton, and regulates integrin signaling. Recent evidence suggests switch-like behavior of the helix bundles that make up the talin rod domains, where individual domains open at different tension levels, exerting positive or negative effects on different protein interactions. These results lead us to propose that talin functions as a mechanosensitive signaling hub that integrates multiple extracellular and intracellular inputs to define a major axis of adhesion signaling

    All Wired Up

    Get PDF
    This selfie shows undergraduate research assistant, Alexander Senetar, wired up in a state of the art, new technology created at the University of Illinois called EROS (Event-Related Optical Signaling). EROS provides high accuracy and precision in showing brain activity in real time. This brain imaging technique is currently being used at Beckman Institute research labs to study cognitive neuroscience, psycholinguistics and speech perception. Our Language and Brain lab is involved in the study of speech perception and language comprehension. For 4 years, I have been an undergraduate research assistant at Beckman and studied the electrophysiological responses to differences in speaking rate and recorded electrical brain activity. For more information about the Image of Research--Undergraduate Edition go to: http://go.library.illinois.edu/imageofresearch_ureditio
    corecore