36 research outputs found

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Re-assessing the likelihood of airborne spread of foot-and-mouth disease at the start of the 1967-1968 UK foot-and-mouth disease epidemic

    No full text
    The likelihood of airborne spread of foot-and-mouth disease at the start of the 1967-1968 epidemic is re-assessed in the light of current understanding of airborne disease spread. The findings strongly confirm those made at the time that airborne virus was the most likely cause of the rapid early development of the disease out to 60 km from the source. This conclusion is reached following a detailed epidemiological, meteorological and modelling study using original records and current modelling techniques. The role played by 'lee waves' as the mechanism for the spread is investigated. It is thought that they played little part in influencing the development of the epidemic. A number of lessons learned from the work are drawn, identifying the need for further research on the quantity and characteristics of airborne virus. The results are also used to illustrate what advice would have been available to disease controllers if the outbreak had occurred in 2004
    corecore