25 research outputs found

    Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site

    Get PDF
    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils

    Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents

    Get PDF
    The paper reports a new route for the fabrication and determination of physicochemical properties and biological activity, of metallic silica-based nanostructure (Ag/SiO2, Cu/SiO2). A research studies shows mono-dispersed nanoparticles in silica matrix with an average size of 12 nm for silver, as well as 12 nm and 4 nm, respectively for copper in hydrophobic and hydrophilic silica composites. The chemical analysis highlights metallic silver and copper ions heterogeneously distributed in the composite as well as metallic oxides such as Ag2O, Cu2O and CuO in hydrophobic system, and CuO in hydrophilic one. Structural research evidences the presence of amorphous, stoichiometric and non-stoichiometric crystalline phase of silica. Biological studies reveal potentially inhibition of growth gram-positive and gram-negative bacteria as well as microscopic fungi. The size of metal nanoparticles and level of silica hydrophobicity show the highest inhibition bacterial growth for hydrophilic system with embedding inside them, 4 nm in size copper nanoparticles. Finally, cytotoxic interaction against human cells with respect to silver and copper silica-based nanocomposites was not found

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≄20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Get PDF
    International audienceThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    Limits to reproduction and seed size-number tradeoffs that shape forest dominance and future recovery

    Get PDF
    The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    Zinc allocation to and within Arabidopsis halleri seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure

    No full text
    Abstract Vegetative tissues of metal(loid)‐hyperaccumulating plants are widely used to study plant metal homeostasis and adaptation to metalliferous soils, but little is known about these mechanisms in their seeds. We explored essential element allocation to Arabidopsis halleri seeds, a species that faces a particular trade‐off between meeting nutrient requirements and minimizing toxicity risks. Combining advanced elemental mapping (micro‐particle induced X‐ray emission) with chemical analyses of plant and soil material, we investigated natural variation in Zn allocation to A. halleri seeds from non‐metalliferous and metalliferous locations. We also assessed the tissue‐level distribution and concentration of other nutrients to identify possible disorders in seed homeostasis. Unexpectedly, the highest Zn concentration was found in seeds of a non‐metalliferous lowland location, whereas concentrations were relatively low in all other seed samples—including metallicolous ones. The abundance of other nutrients in seeds was unaffected by metalliferous site conditions. Our findings depict contrasting strategies of Zn allocation to A. halleri seeds: increased delivery at lowland non‐metalliferous locations (a likely natural selection toward enhanced Zn‐hyperaccumulation in vegetative tissues) versus limited translocation at metalliferous sites where external Zn concentrations are toxic for non‐tolerant plants. Both strategies are worth exploring further to resolve metal homeostasis mechanisms and their effects on seed development and nutrition

    Data from: Rare events of massive plant reproductive investment lead to long-term density-dependent reproductive success

    No full text
    1. The level of reproductive investment and density and distance dependent (DDD) processes are major determinants of plant reproductive output. The reproductive investment of a plant population varies temporally, but whether and how density- and distance-dependent processes are affected by population-level reproductive investment is a puzzle. 2. We used a spatially explicit approach in order to examine DDD effects on Sorbus acuparia crop sizes for a continuous period of 16 years. Our special interest was to investigate whether and how DDD processes affect long-term individual plant reproductive success (PRS) and whether such processes vary between years of relatively high and low population-level reproductive investment, measured as fruit crop size. 3. Our study revealed that DDD processes of fruit crop relate to population level reproductive investment. In most years, including all years with low and most years with moderate reproductive investment, no positive or negative DDD was found for PRS. However, significant negative density-dependent effects were found during most years of high and some years of moderate reproductive investment. During these years, the individual reproductive success decreased with increasing density of conspecifics. 4. The overall accumulated long-term negative density-dependent pattern of PRS was determined by few sporadic years of high reproductive investment, rather than by the most frequent years of low or moderate reproductive investment, when the DDD effects were usually weak. 5. Synthesis. Our study highlights the ecological relevance of relatively infrequent processes which affect PRS, stressing thus the importance of long-term ecological research

    Badger Meles meles as Ecosystem Engineer and Its Legal Status in Europe

    No full text
    The European badger plays an important role as a natural factor shaping species diversity in forests. Its extensive setts can be used by many other animals as shelters. Soil perturbations in their setts support plant communities that differ from the matrix landscape. The badger is also an effective seed disperser. We investigated its role as an ecosystem engineer in preserving species diversity and discussed its legal status across Europe. In most European countries (69.3% of the continent), the badger is hunted, sometimes year-round. The hunting season lasting through winter until early spring may have a negative effect on badger populations, especially when cubs are born in February. Although this species is Red Listed in 19 European countries (with categories ranging from LC to EN), the badger is strictly protected by law in 30.7% of its European range. A reduction in badger populations may limit its ecosystem services (seed dispersal, topsoil disturbances, microhabitat creation). Much new data on the importance of badgers in ecosystem engineering has allowed us to reconsider how we manage badger populations

    Badger <i>Meles meles</i> as Ecosystem Engineer and Its Legal Status in Europe

    No full text
    The European badger plays an important role as a natural factor shaping species diversity in forests. Its extensive setts can be used by many other animals as shelters. Soil perturbations in their setts support plant communities that differ from the matrix landscape. The badger is also an effective seed disperser. We investigated its role as an ecosystem engineer in preserving species diversity and discussed its legal status across Europe. In most European countries (69.3% of the continent), the badger is hunted, sometimes year-round. The hunting season lasting through winter until early spring may have a negative effect on badger populations, especially when cubs are born in February. Although this species is Red Listed in 19 European countries (with categories ranging from LC to EN), the badger is strictly protected by law in 30.7% of its European range. A reduction in badger populations may limit its ecosystem services (seed dispersal, topsoil disturbances, microhabitat creation). Much new data on the importance of badgers in ecosystem engineering has allowed us to reconsider how we manage badger populations
    corecore