38 research outputs found

    Examining mindfulness-based stress reduction: Perceptions from minority older adults residing in a low-income housing facility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mindfulness-based stress reduction (MBSR) programs are becoming increasingly common, but have not been studied in low income minority older populations. We sought to understand which parts of MBSR were most important to practicing MBSR members of this population, and to understand whether they apply their training to daily challenges.</p> <p>Methods</p> <p>We conducted three focus groups with 13 current members of an MBSR program. Participants were African American women over the age of 60 in a low-income housing residence. We tape recorded each session and subsequently used inductive content analysis to identify primary themes.</p> <p>Results and discussion</p> <p>Analysis of the focus group responses revealed three primary themes stress management, applying mindfulness, and the social support of the group meditation. The stressors they cited using MBSR with included growing older with physical pain, medical tests, financial strain, and having grandchildren with significant mental, physical, financial or legal hardships. We found that participants particularly used their MBSR training for coping with medical procedures, and managing both depression and anger.</p> <p>Conclusion</p> <p>A reflective stationary intervention delivered in-residence could be an ideal mechanism to decrease stress in low-income older adult's lives and improve their health.</p

    Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training

    Get PDF
    Purpose: Few human studies have reported early structural adaptations of bone to weight-bearing exercise, which provide a greater contribution to improved bone strength than increased density. This prospective study examined site- and regional-specific adaptations of the tibia during arduous training in a cohort of male military (infantry) recruits to better understand how bone responds in vivo to mechanical loading. Methods: Tibial bone density and geometry were measured in 90 British Army male recruits (ages 21 + 3 y, height 1.78 ± 0.06 m, body mass 73.9 + 9.8 kg) in weeks 1 (Baseline) and 10 of initial military training. Scans were performed at the 4%, 14%, 38% and 66% sites, measured from the distal end plate, using pQCT (XCT2000L, Stratec Pforzheim, Germany). Customised software (BAMPack, L-3 ATI) was used to examine whole bone cross-section and regional sectors. T-tests determined significant differences between time points (P<0.05). Results: Bone density of trabecular and cortical compartments increased significantly at all measured sites. Bone geometry (cortical area and thickness) and bone strength (i, MMi and BSI) at the diaphyseal sites (38 and 66%) were also significantly higher in week 10. Regional changes in density and geometry were largely observed in the anterior, medial-anterior and anterior-posterior sectors. Calf muscle density and area (66% site) increased significantly at week 10 (P<0.01). Conclusions: In vivo mechanical loading improves bone strength of the human tibia by increased density and periosteal expansion, which varies by site and region of the bone. These changes may occur in response to the nature and distribution of forces originating from bending, torsional and shear stresses of military training. These improvements are observed early in training when the osteogenic stimulus is sufficient, which may be close to the fracture threshold in some individuals

    Framework for a Community Health Observing System for the Gulf of Mexico Region: Preparing for Future Disasters

    Get PDF
    © Copyright © 2020 Sandifer, Knapp, Lichtveld, Manley, Abramson, Caffey, Cochran, Collier, Ebi, Engel, Farrington, Finucane, Hale, Halpern, Harville, Hart, Hswen, Kirkpatrick, McEwen, Morris, Orbach, Palinkas, Partyka, Porter, Prather, Rowles, Scott, Seeman, Solo-Gabriele, Svendsen, Tincher, Trtanj, Walker, Yehuda, Yip, Yoskowitz and Singer. The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop

    The Limited Reach of Media in Genocide

    No full text
    An article by Kioko Ireri, lecturer at the School of Humanities and Social Sciences, USIU-A

    The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor

    No full text
    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood

    DNA binding-dependent androgen receptor signaling contributes to gender differences and has physiological actions in males and females

    No full text
    We used our genomic androgen receptor (AR) knockout (ARKO) mouse model, in which the AR is unable to bind DNA to: 1) document gender differences between males and females; 2) identify the genomic (DNA-binding-dependent) AR-mediated actions in males; 3) determine the contribution of genomic AR-mediated actions to these gender differences; and 4) identify physiological genomic AR-mediated actions in females. At 9 weeks of age, control males had higher body, heart and kidney mass, lower spleen mass, and longer and larger bones compared to control females. Compared to control males, ARKO males had lower body and kidney mass, higher splenic mass, and reductions in cortical and trabecular bone. Deletion of the AR in ARKO males abolished the gender differences in heart and cortical bone. Compared with control females, ARKO females had normal body weight, but 14% lower heart mass and heart weight/ body weight ratio. Relative kidney mass was also reduced, and relative spleen mass was increased. ARKO females had a significant reduction in cortical bone growth and changes in trabecular architecture, although with no net change in trabecular bone volume. In conclusion, we have shown that androgens acting via the genomic AR signaling pathway mediate, at least in part, the gender differences in body mass, heart, kidney, spleen, and bone, and play a physiological role in the regulation of cardiac, kidney and splenic size, cortical bone growth, and trabecular bone architecture in females.
    corecore