88 research outputs found

    Uncertainty Assessment of Ice Discharge Using GPR-Derived Ice Thickness from Gourdon Glacier, Antarctic Peninsula

    Get PDF
    Ice cliffs within a glacier represent a challenge for the continuity equations used in many glacier models by interrupting the validity of input parameters. In the case of Gourdon Glacier on James Ross Island, Antarctica, a ∼300–500 m high, almost vertical cliff, separates the outlet glacier from its main accumulation area on the plateau of the island. In 2017 and 2018 we conducted ice thickness measurements during two airborne ground penetrating radar campaigns in order to evaluate differences to older measurements from the 1990s. The observed differences are mostly smaller than the estimated error bars. In comparison to the in situ data, the published “consensus ice thickness estimate” strongly overestimates the ice thickness at the outlet. We analyse three different interpolation and ice thickness reconstruction methods. One approach additionally includes the mass input from the plateau. Differences between the interpolation methods have a minor impact on the ice discharge estimation if the used flux gates are in areas with a good coverage of in situ measurements. A much stronger influence was observed by uncertainties in the glacier velocities derived from remote sensing, especially in the direction of the velocity vector in proximity to the ice cliff. We conclude that the amount of in situ measurements should be increased for specific glacier types in order to detect biases in modeled ice thickness and ice discharge estimations

    Detailed quantification of glacier elevation and mass changes in South Georgia

    Get PDF
    Most glaciers in South America and on the Antarctic Peninsula are retreating and thinning. They are considered strong contributors to global sea level rise. However, there is a lack of glacier mass balance studies in other areas of the Southern Hemisphere, such as the surrounding Antarctic Islands. Here, we present a detailed quantification of the 21st century glacier elevation and mass changes for the entire South Georgia Island using bi-static synthetic aperture radar interferometry between 2000 and 2013. The results suggest a significant mass loss since the beginning of the present century. We calculate an average glacier mass balance of -1.04 0.09 m w.e.a(-1) and a mass loss rate of 2.28 0.19 Gt a(-1) (2000-2013), contributing 0.006 0.001 mm a(-1) to sea-level rise. Additionally, we calculate a subaqueous mass loss of 0.77 0.04 Gt a(-1) (2003-2016), with an area change at the marine and lake-terminating glacier fronts of -6.58 0.33 km(2) a(-1), corresponding to similar to 4% of the total glacier area. Overall, we observe negative mass balance rates in South Georgia, with the highest thinning and retreat rates at the large outlet glaciers located at the north-east coast. Although the spaceborne remote sensing dataset analysed in this research is a key contribution to better understanding of the glacier changes in South Georgia, more detailed field measurements, glacier dynamics studies or further long-term analysis with high-resolution regional climate models are required to precisely identify the forcing factors

    Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)

    Get PDF
    A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation

    Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard

    Get PDF
    The basal topography is largely unknown beneath most glaciers and ice caps, and many attempts have been made to estimate a thickness field from other more accessible information at the surface. Here, we present a two-step reconstruction approach for ice thickness that solves mass conservation over single or several connected drainage basins. The approach is applied to a variety of test geometries with abundant thickness measurements including marine- and land-terminating glaciers as well as a 2400-km2 ice cap on Svalbard. The input requirements are kept to a minimum for the first step. In this step, a geometrically controlled, non-local flux solution is converted into thickness values relying on the shallow ice approximation (SIA). In a second step, the thickness field is updated along fast-flowing glacier trunks on the basis of velocity observations. Both steps account for available thickness measurements. Each thickness field is presented together with an error-estimate map based on a formal propagation of input uncertainties. These error estimates point out that the thickness field is least constrained near ice divides or in other stagnant areas. Withholding a share of the thickness measurements, error estimates tend to overestimate mismatch values in a median sense. We also have to accept an aggregate uncertainty of at least 25-% in the reconstructed thickness field for glaciers with very sparse or no observations. For Vestfonna ice cap (VIC), a previous ice volume estimate based on the same measurement record as used here has to be corrected upward by 22-%. We also find that a 13-% area fraction of the ice cap is in fact grounded below sea level. The former 5-% estimate from a direct measurement interpolation exceeds an aggregate maximum range of 6-23-% as inferred from the error estimates here.This study received primary funding from the German Research Foundation (DFG) under grant number FU1032/1-1. Results presented in this publication are based on numerical simulations conducted at the high-performance computing centre of the Regionales Rechenzentrum Erlangen (RRZE) of the University of Erlangen-Nuremberg. The reconstruction approach also benefits from co-development work of the Elmer/Ice team at the CSC-IT Center for Science Ltd. (Finland). The velocity analysis on Svalbard was funded by DFG within the priority programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas under contract number BR2105/9-1 and received financial support from the Helmholtz Association of the German Research Centres (HGF) Alliance on Remote Sensing and Earth System Dynamics. Thickness data collection in Wedel Jarlsberg Land was funded by the Spanish R&D projects C11093001 and C150954001, NCBiR/PolarCLIMATE-2009/2-2/2010 from the Polish National Centre for R&D, by IPY/269/2006 from the Polish Ministry of Science and Higher Education, by Polish-Norwegian funding through the AWAKE (PNRF-22-AI-1/07) project, by the EU FP7 ice2sea programme (grant number 226375) and by funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies of the University of Silesia, Poland. The DEM generation inWedel Jarlsberg Land received financial support from the European Research Council (grant 320816) and from ESA (project Glaciers CCI, 4000109873/14/I-NB). TanDEM-X data were provided under AO XTIGLAC6770. The WRF-SMB field was produced within the PERMANOR project funded by the Norwegian Research Council (255331)

    Experimental mapping of soluble protein domains using a hierarchical approach

    Get PDF
    Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained

    Improved tractography using asymmetric fibre orientation distributions

    Get PDF
    Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion measurements are antipodally symmetric (diffusion along x and –x are equal), whereas the distribution of fibre orientations within a voxel is generally not symmetric. Therefore, different sub-voxel patterns such as crossing, fanning, or sharp bending, cannot be distinguished by fitting a voxel-wise model to the signal. However, asymmetric fibre patterns can potentially be distinguished once spatial information from neighbouring voxels is taken into account. We propose a neighbourhood-constrained spherical deconvolution approach that is capable of inferring asymmetric fibre orientation distributions (A-fods). Importantly, we further design and implement a tractography algorithm that utilises the estimated A-fods, since the commonly used streamline tractography paradigm cannot directly take advantage of the new information. We assess performance using ultra-high resolution histology data where we can compare true orientation distributions against sub-voxel fibre patterns estimated from down-sampled data. Finally, we explore the benefits of A-fods-based tractography using in vivo data by evaluating agreement of tractography predictions with connectivity estimates made using different in-vivo modalities. The proposed approach can reliably estimate complex fibre patterns such as sharp bending and fanning, which voxel-wise approaches cannot estimate. Moreover, histology-based and in-vivo results show that the new framework allows more accurate tractography and reconstruction of maps quantifying (symmetric and asymmetric) fibre complexity

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks

    Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data

    Get PDF
    Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea-level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing strategies. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods, but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty in order to enhance inter-comparison and empower physical process insights across glacier elevation-change studies
    corecore