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A B S T R A C T

Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion
to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion mea-
surements are antipodally symmetric (diffusion along x and –x are equal), whereas the distribution of fibre
orientations within a voxel is generally not symmetric. Therefore, different sub-voxel patterns such as crossing,
fanning, or sharp bending, cannot be distinguished by fitting a voxel-wise model to the signal. However, asym-
metric fibre patterns can potentially be distinguished once spatial information from neighbouring voxels is taken
into account. We propose a neighbourhood-constrained spherical deconvolution approach that is capable of
inferring asymmetric fibre orientation distributions (A-fods). Importantly, we further design and implement a
tractography algorithm that utilises the estimated A-fods, since the commonly used streamline tractography
paradigm cannot directly take advantage of the new information. We assess performance using ultra-high reso-
lution histology data where we can compare true orientation distributions against sub-voxel fibre patterns esti-
mated from down-sampled data. Finally, we explore the benefits of A-fods-based tractography using in vivo data
by evaluating agreement of tractography predictions with connectivity estimates made using different in-vivo
modalities. The proposed approach can reliably estimate complex fibre patterns such as sharp bending and
fanning, which voxel-wise approaches cannot estimate. Moreover, histology-based and in-vivo results show that
the new framework allows more accurate tractography and reconstruction of maps quantifying (symmetric and
asymmetric) fibre complexity.
1. Introduction

Over the last decades, several developments in the field of magnetic
resonance imaging (MRI) have allowed researchers to investigate the
anatomical organisation of the brain in vivo and non-invasively at the
macroscopic level. Amongst several MRI data acquisition techniques,
diffusionMRI (dMRI) has shown great potential to probe the organisation
of white matter and structural connection patterns of the brain at
different scales (Bastiani and Roebroeck, 2015; Jbabdi et al., 2015; Mori
and van Zijl, 2002; Tournier et al., 2011). The pattern of diffusion dis-
placements of water within tissue can be used to probe the main axonal
orientations, as water molecules tend to diffuse preferentially along
axons. Measurements are, therefore, made sensitive to water diffusion
along different orientations. One can then estimate, in each voxel, a fibre
orientation distribution (fod) that encodes the fraction of fibre bundles
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oriented along different directions. Once all the voxel-wise fods have
been successfully obtained, a tractography algorithm can be used to
reconstruct structural connections between different (sub-)cortical areas.

Despite the evident success of this technology in localising major fibre
bundles (e.g., Catani et al., 2012; Catani and Thiebaut de Schotten, 2008;
Johansen-Berg and Behrens, 2006), limitations arise from the indirect
mapping of diffusion measurements to fods. Tens of thousands of white
matter axons may be contained within a single dMRI voxel, where fibres
can bend very sharply (e.g., when entering the wall of a cortical gyrus),
fan out (e.g., when entering the crown of a cortical gyrus) or converge
(e.g. when projections from different cortical regions converge to the
main body of the internal capsule). Given the limited resolution of typical
dMRI acquisitions and the inherent antipodal symmetry of the sampled
signal (measurements along directions x and –x are equal), all these
different sub-voxel patterns cannot be distinguished when considering
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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only voxel-wise measurements (Jbabdi and Johansen-Berg, 2011; Seu-
narine and Alexander, 2009; Tournier et al., 2011). For instance, fibres
fanning out and fanning in will give rise to the same voxel-wise fod.
However, spatial information can be helpful in these cases (Savadjiev
et al., 2006). A sharp bend would comprise of a different spatial
arrangement of fods than a fan or a crossing.

This idea of incorporating information from neighbouring voxels in
the estimation of fibre patterns has been proposed before. Themotivation
comes from the principle of fibre continuity (Reisert et al., 2012; Reisert
and Kiselev, 2011) or co-helicity (Campbell et al., 2014; Savadjiev et al.,
2006, 2008); fibres should be continuous in space, therefore whatever
leaves a voxel should enter one of its neighbours. Thus, a set of fods can
be estimated using neighbourhoods of voxels. Using this principle,
asymmetric functions have been estimated before, by spatially post-
processing and regularising symmetric fods (Barmpoutis et al., 2008;
Cetin et al., 2015; Ehricke et al., 2011) or by using specific geometric
priors (Reisert et al., 2012; Savadjiev et al., 2006). However, there have
been very few attempts to take advantage of the extra information pro-
vided by asymmetric fods in a tractography algorithm. Expanding the
currently available tracking methods is not trivial (Campbell et al., 2014;
Rowe et al., 2013) and simply plugging asymmetric fods into a typical
tractography paradigm will not work (Ehricke et al., 2011), as current
tractography methods expect within-voxel symmetric orientation
information.

In this work, we propose a direct estimation of asymmetric fods (A-
fods) from dMRI data based on a spherical deconvolution approach that
can infer sub-voxel patterns. Key to the estimation of A-fods is the
addition of neighbourhood continuity components in the fitting. The
model uses a set of symmetric and asymmetric basis functions to repre-
sent A-fods and naturally extends the non-parametric constrained
spherical deconvolution framework for both single (Tournier et al., 2004,
2007) and multi-shell data (Jeurissen et al., 2014). Spherical deconvo-
lution has been very successful in estimating fibre crossings, but our
proposed approach allows to further assess sharp bends and fibre
dispersion, including fanning polarity. Importantly, we also propose a
tractography algorithm that extends previous frameworks to make use of
the estimated A-fods. We assess the increased accuracy obtained from the
A-fod model and tractography algorithm using anatomically-realistic
fibre patterns and tracking extracted from high resolution histology.
Finally, we show examples using in vivo data, investigating the effect of
fanning polarity on tractography and showing benefits in resolving
connection patterns when asymmetry is considered. In the absence of
ground truth in-vivo, we compare connectivity mapping estimates from
our approach with measures of connectivity obtained using resting state
functional MRI (rs-fMRI).

2. Theory

2.1. Asymmetric fibre orientation density functions

The main motivation for our method is shown in the toy examples of
Fig. 1. Even if the voxel-wise signal cannot always be uniquely predictive
of the sub-voxel fibre orientations, the local spatial arrangement of ori-
entations can be different depending on the nature of the voxel-wise
pattern. Therefore, by considering information from the neighbour-
hood, we aim to resolve asymmetric fibre patterns.

Voxel-wise spherical deconvolution (SD) techniques for inferring
fibre orientations assume that the dMRI signal S at every voxel is the
convolution of a fibre orientation distribution F and a fibre response
function R:

Sðθ;ϕÞ ¼ Fðθ;ϕÞ � RðθÞ; (1)

where θ and ϕ are the elevation and azimuthal angles in spherical co-
ordinates. The problem of determining F for a given response function R
can be solved parametrically (Anderson, 2005; Behrens et al., 2007;
206
Dell'acqua et al., 2010; Sotiropoulos et al., 2012) or non-parametrically
(Descoteaux et al., 2007, 2009; Jeurissen et al., 2014; Tournier et al.,
2004, 2007). An efficient and commonly-used non-parametric formalism
for SD uses spherical harmonics (SH) (Descoteaux et al., 2007; Tournier
et al., 2007), which form a linear orthonormal basis set over the unit
sphere (see Supplementary material). Importantly, in the specific case of
dMRI, the measurements are antipodally symmetric, and therefore only
symmetric fods can be fitted to such measurements. This means that only
even-order functions of the spherical harmonics basis can be considered.
Asymmetric (i.e., odd-order) components can only capture noise and are
therefore typically excluded from the estimation (Descoteaux et al.,
2007; Tournier et al., 2007). This leads to the general formulation of SD
as a constrained linear least squares problem:

bf ¼ argminfkCf � Yk2; with Bf � 0; (2)

where f is a vector of unknown even-order coefficients, C is a matrix that
encodes even-order basis functions convolved with the fibre response
function, B is a matrix that maps the coefficients to the fod amplitudes on
the sphere, and Y is the acquired dMRI signal in a voxel (see Supple-
mentary material). The positivity constraint ensures that the fod ampli-
tudes are always positive.

We extend the above framework by including the full spherical har-
monics basis set in order to model asymmetric fods (A-fods). The con-
ventional symmetric voxel-wise representation is augmented by
incorporating information from neighbouring voxels. The proposed A-
fod in a voxel is represented by both even and odd order SH functions.
The even components are used to model the within-voxel signal, while
the odd components allow for asymmetries informed by the spatial
arrangement of the signal in neighbouring voxels. We devised the
following cost function, minimised for the optimal set of SH coefficients
to represent an A-fod:

cf all ¼ argmin
f all

�kCf even � Yvk2 þ λ2kBf all � zk2�; with Bf all � 0 (3)

where fall contains both odd and even-order SH coefficients and feven
contains only even order coefficients. As in Eq. (2), the first term mini-
mizes the sum of squared residuals between the signal predicted by a
voxel-wise symmetric fod and the acquired dMRI signal Yv for a given
voxel v. The second term (weighted by the regularization parameter λ)
minimizes the difference between the fod (Bfall) at that voxel and the
conjunction of fods' amplitudes z in a 3 � 3 � 3 neighbourhood as seen
from the centre of voxel v. By including all SH coefficients, the second
spatial term affects the estimation of both even and odd components.
Specifically, we create a conjunction fod, comprised ofM¼ 252 points on
the sphere (obtained by a sphere geodesic tessellation). For each point i
(1�i�M) and respective orientation ui, we define a value zi using the fods
of neighbouring voxels (Fig. 2B).

One possible option for defining z could be to set zi ¼ fodxð�uiÞ
where the fod is taken from the voxel x in a neighbourhood of v such that
the line connecting the centres of x and v is closest to ui (Fig. 2A).
However, we instead use a soft version of the above to minimize the
discretising effect of a voxel grid. We define z as a weighted sum over
neighbouring fods:

zi ¼ 1
c

X
j⊂NðvÞ

e
�αj
β fodjð�uiÞ (4)

where αj is the angle between vectors ui and the line connecting the
centre of the voxel v to the centre of a neighbour j belonging to a subset of
a 3� 3� 3 neighbourhood ofN(v). Specifically, a neighbour j is included
in the estimation of the conjunction fod z if αj < 90�. The parameter β can
be empirically set and controls the slope of the exponential weighting
function and c is a normalizing constant. Finally, and similar to the voxel-
wise estimation, we enforce the positivity of the fod by adding the linear



Fig. 1. Toy examples of 3 different complex fibre patterns: sharp bend (top row), fibre crossing (middle row) and fibre fanning (bottom row). When using symmetric fods (middle column),
sharp bending and fanning patterns cannot be accurately represented. When using asymmetric fods (rightmost column), only the meaningful fod peaks are selected both in the sharp
bending and fibre crossing cases. Moreover, the right fanning polarity (i.e., increased dispersion along the left-right orientation) can be obtained.
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constraint Bfall � 0.We use a quadratic problem solver to minimize Eq.
(3) iteratively until convergence. The iterative updates are needed as,
contrary to a voxel-wise estimation, our scheme considers all data from a
neighbourhood of voxels at the same time. Therefore, all neighbourhoods
of a volume are swept through, before going to the next iteration. The fod
continuity term in the cost function (Eq. (3)) is updated at the end of each
iteration, when all the voxel-wise fods have changed. We initialize the
optimisation by fitting voxel-wise symmetric fods in the first iteration
using unconstrained spherical deconvolution (Tournier et al., 2004).
These are then updated in subsequent iterations to reflect neighbourhood
information.
2.2. Extension to multi-shell data using multi-tissue fibre responses

The estimation of A-fods can become problematic at tissue interfaces
and might therefore require some extra constraints (Reisert and Kiselev,
2011). This is mainly because a single response function might not be
enough to obtain fods representing actual fibre populations in isotropic
regions such as grey matter and CSF (Roine et al., 2014). Recent work
(Jeurissen et al., 2014) has shown that the classical non-parametric
spherical deconvolution framework (Tournier et al., 2004, 2007) can
be extended to deal with multi-shell data (i.e., datasets acquired using
207
multiple b-values). Moreover, including different response functions for
three different tissue types (white matter, grey matter and CSF) improves
the precision of fods. The same idea can be applied for A-fod estimation
using the proposed approach. Equation (3) can be extended to:

cf all ¼ argmin
f all
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:
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where Ck,p are matrices used to model the k-th shell and p-th tissue type,
fp contains the SH coefficients of the A-fod for the p-th tissue type, Yk is
the acquired dMRI signal in a voxel for the k-th shell and (Bpfp) is the A-
fod at v for the p-th tissue type. In the present work, we consider three
main tissue types: white matter, grey matter and CSF. The first tissue type
(p ¼ 1) is white matter, and the fod continuity constraints only apply to
this compartment.



Fig. 2. Asymmetric fod estimation procedure. A) General principle to obtain an A-fod in
the current voxel v along orientation ui. When considering only one neighbouring voxel at
a time, the algorithm tries to match the amplitude of fodv along ui with the one of fodx
along –ui. Voxel x and its fodx are selected amongst the other neighbours of v, because the
vector wx (connecting the centre of voxel v to the one of voxel x, dashed line) is the closest
to vector ui. B) Toy example of complex fibre pattern, i.e., fibre fanning. The first column
shows the resulting voxel-wise S-fods overlaid on top of the simulated ground truth
simulated patterns. The middle column shows the conjunction fod weighting the contri-
bution of multiple neighbouring voxels (vector z in Eqs. (3) and (4)) for the first iteration
of the A-fod estimation algorithm (top right voxel in the bending case, leftmost voxel for
the fibre fanning configuration). The last column shows that, after 3 iterations, the
resulting A-fod captures the right fanning polarity (i.e., increased dispersion along the left-
right orientation).

Fig. 3. Peak-based and whole-fod-based tractography algorithm for a sharp sub-voxel
bending fibre configuration. Step 0 represents the current streamline (black line) end-
points (black dots) overlaid onto two neighbouring A-fods. A) Step 0 of the peak-based
case shows the peaks (red arrows) extracted from the underlying A-fods. At step 1 and
step 2, the thicker red arrows represent the selected A-fod peaks (d1 and d2 respectively)
used for the next propagation steps. Such maxima were chosen as they lie within the sub-
volumes (non-shaded area) identified by the current position vector p (dotted lines) and
the plane perpendicular to it at the voxel centre (dashed lines). At each step, different non-
relevant peaks (red dashed lines) are discarded. B) At step 1 of the whole-fod-based case,
after A-fod weighting using γ, direction d1 lying within the user-defined cone of propa-
gation (non-shaded area delimited by black lines) is selected using rejection sampling. At
step 2 direction d2 is chosen after weighting the A-fod using the same rationale.
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Following this approach, we need to measure k x p response func-
tions, i.e., one for each acquired b-shell and tissue type. Tissue types are
derived using a T1 segmented volume brought to native dMRI data
space. For each tissue type, 300 voxels were selected to obtain the
response function. These voxels were randomly selected for grey matter
and CSF and the maximum harmonic order was fixed at 0 (isotropic
model). For the white matter response function, the 300 voxels within
the white matter with the highest fractional anisotropy (and higher
than 0.7) were selected. Their signal was then averaged to produce a
fibre response function after aligning their principal diffusion direction
as estimated from a diffusion tensor fit with the z-axis (Tournier
et al., 2004).

2.3. Tractography using A-fods

Classical local tractography algorithms initialize a set of streamlines
from every seed point and propagate them using orientations suggested
by the local fods at each step. When a streamline enters a new voxel, the
new direction of propagation is obtained by sampling the local fod (or
extracting its maxima). Since the fod is symmetric, the samples are
drawn from a sub-set of the fod lying within the cone of propagation
that is built around the last incident direction. Such local stepping
approach would not use the full potential of A-fods as it does not ensure
fibre continuity as defined in the previous section. For instance, in a
case where fibres converge in one direction and fan out in the opposite
direction, the symmetric fod will always suggest fibre dispersion and
will lead to fanning out in both directions (Jbabdi and Johansen-
Berg, 2011).

To take advantage of the A-fods, we re-designed the classical local
fibre-tracking approaches. Because of the sub-voxel information, it be-
comes crucial to take into account not only orientations and incoming
propagation direction, but also the relationship between the streamline
current location and the shape of the fod seen at this location. For
instance, a streamline entering a voxel where fibres fan should select its
next propagation orientation by also considering the fanning polarity. In
practice, given the potential asymmetry in A-fods, we need to take into
account not only the fod part that lies within the cone of propagation
defined by the last stepping direction, but also the part on the opposite
side. This would allow propagation that respects the fibre continuity
assumption.

We propose two variants of a tractography algorithm: one that uses
fod peaks and one that samples from the whole fod. The former works as
follows: peaks are pre-extracted from each fod using Powell's method
(Jansons and Alexander, 2003). When a streamline enters a new voxel, a
virtual plane is defined. Such plane passes through the centre of the voxel
and is perpendicular to the position vector p pointing from the centre of
the voxel to the current position of the streamline (Fig. 3A). This plane
divides the voxel into two parts and it is used to select the peaks of the A-
fod that should be used for the next direction of propagation. The algo-
rithm discards all fod peaks that do not lie on the same side of the plane as
the streamline current location p. Note that these steps would leave peaks
of symmetric fods unchanged. The remaining peaks define potential
orientations for propagation. The algorithm then proceeds as a conven-
tional streamline tractography: a new cone of propagation is built around
the last direction of propagation dj; from the remaining peaks the one
that lies within the cone of propagation and is most collinear to the last
incident direction dj is selected (Fig. 3A) and a step is made along that
peak orientation.

In the case where the full fod is used (rather than just its peaks), we
use a different approach. The A-fod at the current voxel and location is
weighted as a function of the position vector p relative to the fod:

fod0ðuiÞjp ¼ γðp;uiÞfodðuiÞ þ ð1� γðp;uiÞÞfodð�uiÞ (6)

where fodðuiÞ is the A-fod evaluated along direction ui and:



M. Bastiani et al. NeuroImage 158 (2017) 205–218
γðp;uiÞ ¼
8<
:

0
p⋅ui þ 0:5
1

if p⋅ui < � 0:5
if � 0:5< p⋅ui <0:5
if p⋅ui >0:5

(7)

This weighting step promotes the relevant lobe of the A-fod relative to
the current streamline position within the current voxel (Fig. 3B) and
uses the opposite of this lobe to provide a symmetric estimate. Again,
notice that symmetric fods are left unchanged by this step. The function γ
is a smooth version of the step-function used in the first algorithm in the
form of a plane. A key feature of this approach is that in the case of fibre
fanning, this algorithm forces streamlines to take into account fanning
polarity such that groups of streamlines converge or diverge depending
on their incoming directions. After the location-dependent weighting of
the fod, rejection sampling is used to sample candidate orientations
within the cone of propagation built around the last stepping direction.
2.4. Quantifying asymmetry

In order to quantify the degree of asymmetry in the orientation dis-
tributions fitted by our model, we use the fod power. Since the spherical
harmonics basis is orthonormal, overall power can be calculated as the
sum-of-squares of the coefficients:

P ¼ ∫
S
jfodðuÞj2du ¼

XL

l¼1

1
2lþ 1

Xl

m¼�l

jf lmj2 (8)

where P is the power of the fod, L is the maximum harmonic order, and
flm the spherical harmonic coefficient of order l and degree m. To
compute the power of the asymmetric and symmetric fod components,
we use the odd and even order coefficients in the above sum respectively.

3. Methods

3.1. Histology-based simulations

To assess the ability to estimate sub-voxel information using A-fods,
we extracted fibre patterns from high-resolution histology of a macaque
brain. We used image processing to estimate fibre orientations at ~μm
scale and used these orientations to simulate dMRI signal. We then
downsampled the signal at MR resolution levels (~mm scale) and applied
single-shell and single-tissue A-fod estimation. Finally, we compared the
estimated sub-voxel patterns (from the low-resolution data) with the
ground-truth high-resolution (from histology).

More specifically, a postnatal day 6 macaque brain was perfusion-
fixed with 4% paraformaldehyde and postfixed for 24 h at 4 �C tem-
perature. The sample was then sectioned coronally at a slice thickness of
70 μm using a Vibratome. Slices were immunostained with antibody to
myelin basic protein (MBP, MAB395, Millipore) at 1:100 dilution and
using Vectastain (Vector, USA) immunodetection kit with VIP (Vector) as
chromogen. After mounting, dehydration and coverslipping, sections
were scanned using a NanoZoomer 2 (Hamamatsu) microscope equipped
with an Olympus lens (the final in-plane resolution of the images
was 50 μm � 50 μm).

Histological sections were processed using pixel-wise structure tensor
analysis (Budde and Frank, 2012; Sotiropoulos et al., 2013a). Intensity
gradients were calculated on grayscale images, after smoothing using a
2D Gaussian kernel (to increase stability in gradient calculation). A
structure tensor was then obtained for each pixel, using the gradients of
the pixel's local neighbourhood. The eigenvector of the structure tensor
corresponding to the smallest eigenvalue gave the coherence direction,
i.e. the direction along which the image intensity exhibits the lowest
fluctuations (Weickert, 1999). These pixel-wise directions provide a good
description of the underlying neuronal fibre orientations, as traced by the
histological staining process.

The diffusion MRI signal was simulated using the structure tensor
209
estimates and the ball and stick model (Behrens et al., 2003). The
orientation extracted from the structure tensor and a diffusivity of
0.7 μm2/ms were used. The fractional volume f of each stick was obtained
using the grey level index (GLI) of the stained section's image using
f ¼ 1� GLI

255. The b-value was set to 2000 s/mm2. Once the signals were
simulated at the high-resolution of histology, they were downsampled to
1 mm � 1 mm pixel sizes. This was performed by summing signal con-
tributions arising from every element of a 20� 20 pixel grid. Rician noise
(σ ¼ 0.05) was then added to the simulated signal to obtain an SNR of 20
(i.e., S0/σ, where S0 is the amplitude of the b ¼ 0 signal – S0 ¼ 1 was
assumed in the simulations). A-fods were then estimated using the pro-
posed approach (and a 3 � 3 neighbourhood) and S-fods using the
approach proposed by (Tournier et al., 2007).
3.2. Histology-based A-fod validation

Histology-extracted fods (Hist-fods) that reflect sub-voxel fibre pat-
terns were used to evaluate the results of the proposed A-fod estimation
framework. For each downsampled pixel, Hist-fods were computed by
reconstructing angular histograms of the orientations obtained from
structure tensor analysis at high-resolution and were contained within
the respective pixel. Each histogram comprised 360 bins (¼1� angular
resolution). To allow asymmetry representation in the estimated histo-
grams, each bin quantified the number of orientations that were oriented
along the same direction and that lay within the sub-volume identified by
the voxel's boundaries and the plane perpendicular (at the voxel centre)
to the current sampled direction. The angular histogram was then
smoothed by convolving it with a Gaussian window of 23� full-width at
half maximum (FWHM). This value was obtained using a non-parametric
normal kernel density estimation approach and represents the average
bandwidth of the kernel smoothing window (Seehaus et al., 2015). Then,
the correlation between Hist-fods and the estimated fods was computed
in each down-sampled pixel (i.e., 1 mm isotropic resolution).
3.3. Histology-based tractography

We further evaluated the performance of the proposed tractography
approaches. When using the peak-tracking approach, a maximum num-
ber of 3 (6) peaks were extracted from the S-fod (A-fod) field using
Powell's method (Jansons and Alexander, 2003). Euler's integration
method was then applied on the trilinearly interpolated vector field of
fod peaks. To explore benefits, we compared results obtained using A-
fod-based tractography to the downsampled data with results obtained
by applying 1) conventional streamline tractography to the very high-
resolution orientations estimated using structure tensor analysis and 2)
S-fod-based tractography with trilinear interpolation to the down-
sampled data. Our histology-based simulations were two-dimensional,
therefore the tractography examples were limited to lie within the
same plane. Step-size, angular threshold, and fod threshold were set to
20% of the pixel size, 40� and 0.1 respectively.

To further assess the potential of using A-fods in combination with the
proposed tractography approach, a topography-preservation experiment
was performed. The idea was to test whether topographical organisation
obtained when tracking a spreading pattern (WM to cortex) is preserved
when tracking in the opposite converging direction. A region of interest
(ROI) was defined comprising the white matter dorsal and lateral to the
putamen as it enters the internal capsule. From each ROI pixel, 5000
streamlines were seeded once using S-fods and once using the proposed
A-fods (fanning out, Fig. 4). Grey matter pixels that were reached by at
least one streamline were grouped together to form a binary mask
(GMHitMask). The initial seed ROI was then sub-divided into three
smaller ROIs (Fig. 4). A number was assigned to each grey matter voxel
belonging to GMHitMask, identifying the sub-ROI that was mostly con-
nected to it. Lastly, 5000 streamlines were seeded from each grey matter
pixel within GMHitMask (fanning in, Fig. 4). The fraction of streamlines



Fig. 4. Cartoon representation of the fanning in and out configurations (left and middle panels). Streamlines are colour-coded based on their seed ROI of origin and overlaid on top of a
coronal myelin-stained section (right panel).
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that correctly reached the initial seed WM ROIs was then quantified to
assess whether A-fods help preserving the topography of these
connections.
3.4. MRI data analysis

Diffusion MRI and T1-weighted data were obtained from the WU-
Minn Human Connectome Project (HCP) (Sotiropoulos et al., 2013b;
Van Essen and Ugurbil, 2012). Briefly, the HCP dMRI protocol uses a
single-shot 2D EPI acquisition with Stejskal-Tanner pulsed gradients
(Multiband factor ¼ 3, 1.25 mm3 isotropic resolution, 110 slices, partial
Fourier ¼ 6/8, 3 b-value shells ¼ 1000-2000-3000 s/mm2, 90 dMRI
volumes for each shellþ 5b0s acquired twice varying the phase encoding
direction, TE/TR ¼ 89/5500 ms). Standard minimal pre-processing was
run on the data to correct for eddy current and susceptibility induced
distortions, bulk motion and gradient non-linearity (Andersson and
Sotiropoulos, 2016; Glasser et al., 2013; Sotiropoulos et al., 2013b).

A-fods and S-fods were fitted to the multi-shell data using the multi-
shell multi-tissue approach and a maximum harmonic order of 8 in white
matter voxels in 10 different HCP subjects (3 � 3 � 3 neighbourhoods
used for the A-fods). Maps of (a)symmetric coefficients were estimated
for each individual subject and averaged in MNI space to identify white
matter areas where fods are more asymmetric. Similar to the histology
data analysis, tractography experiments were performed to assess the
benefits of the proposed approach in estimating topographic
organisations.

A topography-preserving experiment was performed to assess the
benefit of resolving fanning polarities. Pathways spreading from the in-
ternal capsule to the cortex and converging from the cortex to the internal
capsule are good candidates for such an experiment. An ROI in standard
MNI space of the left internal capsule (IC) was obtained using the ICBM
atlas (Mori et al., 2008; Mori and van Zijl, 2007; Wakana et al., 2004) (by
grouping together the anterior and posterior IC parts at axial slice
z¼ 64). The ROI was nonlinearly warped to the diffusion space of 10 HCP
subjects (Andersson et al., 2010). First, 5000 streamlines were propa-
gated from each IC voxel and only those reaching the white-grey matter
boundary were retained. Each IC voxel was assigned a label L (see labels
in Fig. 11) representing the cortical area (Desikan et al., 2006) at which
streamlines (seeded from that voxel) mostly terminated. Then, the
experiment was repeated in the opposite direction; 5000 streamlines
were seeded from theWM/GM boundary vertices reached in the previous
step. Only those streamlines reaching the original IC mask were retained.
Tractography was performed using both the symmetric and asymmetric
whole-fods and peak-based tractography (step size and curvature
threshold were identical). To assess topography preservation, stream-
lines from each cortical region A to all labels L in the IC (i.e., the
ensemble of IC voxels that preferentially projected to cortical region L)
were counted. Preserved topography requires that the countA-A is higher
than any other count A-L with L≠ A.
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Finally, in the absence of ground-truth for the in-vivo data, we
assessed the agreement of the connection patterns estimated using S-fod
and A-fod tractography with connectivity estimated using a different MRI
modality (resting-state functional MRI).
3.5. Hyper-parameter selection

The A-fod cost function (Eqs. (3) and (5)) has a number of hyper-
parameters that we need to set for the optimisation. These include the
regularization parameter λ and the number of iterations. We used a k-fold
cross-validation to find the optimal λ. Thirty thousand random white
matter voxels from an HCP dMRI dataset and 61 candidate values for λ,
logarithmically spanning the interval between 0.01 and 10, were
considered. The signal in each of these voxels was divided into k parti-
tions of n signal values and the values from k-1 sets were used to fit the
proposed model. To test the goodness of fit on the k-th partition we
computed the mean squared error (MSE) between the predicted and the
measured signal. The λ parameter that was minimizing the MSE in every
voxel was selected. This operation was repeated 61 � k times by
considering a different signal partition at each iteration. More specif-
ically, we set k to 10, for a total of n ¼ 9 unique samples for each
partition. We found that the optimal regularization parameter was
λ ¼ 0.1 (this was the mode of the distribution of optimal λ across
all voxels).

Convergence of the A-fod estimation procedure was evaluated by
computing the average sum of squared differences of the spherical har-
monics coefficients across the whole data volume between the current
iteration and the previous one. A threshold was empirically set after vi-
sual inspection of simulated and in vivo data to 0.001. On average, the
algorithm converged in 3 iterations. The angle β that determines the
slope of the weighting function when calculating vector z (Eq. (4)) was
set to 40� to limit the influence of neighbouring directions that might
smooth fod peaks (Ehricke et al., 2011).

4. Results

4.1. Histology-based simulations

Fig. 5 shows examples of S-fods and A-fods from simulated data with
the underlying fibre patterns extracted from myelin stained sections. The
A-fods depict Y-shaped fibre splitting, C-shaped bending as well as fan-
ning polarity, where S-fods estimate crossings or symmetric orientation
dispersion.

To quantify these differences, we compared the fibre patterns sug-
gested by A-fods and S-fods (estimated at low resolution - mm scale) to
“ground-truth” histology-based fods (Hist-fods) (computed at the high
resolution – μm scale). As shown in Fig. 6, A-fods are matching Hist-fods
better than S-fods. Particularly in voxels with asymmetric patterns, A-
fods correlate significantly better with Hist-fods compared to S-fods. In



Fig. 5. Comparison of A) symmetric and B) asymmetric fods estimated on simulated data with fibre patterns extracted from histology. Fods are overlaid on myelin-stained section. The
three zoomed insets show how A-fods are capable of better delineating three-way splitting (first & second column) and fibres bending sharply to enter cortical grey matter (third column).
Fods are colour-coded based on a 2D colour map (red for left-right and blue for up-down).
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such voxels, the median correlation with Hist-fods was equal to 0.73 and
0.86 when using S-fods and A-fods respectively. In voxels with symmetric
patterns, the benefit of using A-fods is smaller; the median correlation
with Hist-fods was equal to 0.89 and 0.9 when using S-fods and A-fods
respectively. The examples shown in the Figure are derived from three
different voxels, with the ground-truth patterns reflecting a combination
of fibres splitting, fanning and bending. The correlations between the
angular histograms of S-fods and Hist-fods were: A) 0.4, B) 0.78 and C)
Fig. 6. Comparison between histology-based, symmetric and asymmetric fods. Left panel show
sections. A distinction is made between fibre patterns that exhibit high or low asymmetry (i.e.,
The right panel shows some example fods from a sample histological slice shown on the left (wh
fibre fanning & bending and C) fibre bending. Polar plots show the three different fods on top of
three histology-based fods overlaid onto the high resolution structure tensors comprised withi
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0.84. When using A-fods, the correlations improved significantly: A)
0.87, B) 0.9 and C) 0.95.

We assessed the accuracy and precision of the proposed approach by
re-running the fod estimation on 50 different noise realizations of each
MRI-simulated voxel from a single histological section at 4 different SNR
levels. Fig. 7 focuses on the same voxels presented in Fig. 6 and shows
that our proposed approach is quite robust even when SNR is low
(~¼ 10). Moreover, as amplitudes are consistent between asymmetric
s histograms of correlations between fods and Hist-fods across ten different histological
where the power of the asymmetric component of the A-fod is higher or lower than 0.01).
ite/grey matter boundary overlaid in green). A) non-symmetric fibre crossing/splitting, B)
each other colour-coded according to the legend at the bottom. The bottom row shows the
n the simulated 1 mm isotropic voxel.



Fig. 7. Simulation results for the three voxels shown in Fig. 6. Mean A-fods (S-fods) over 50 repetitions and at 4 different SNRs are shown as red (blue) outlines. Mean amplitudes þ 2
standard deviations are shown as dashed grey contours. Black lines represent peaks extracted from the corresponding ground truth Hist-fods. Plots in the rightmost column show the
average correlations (error-bars ¼ 1 standard deviation) between Hist-fods and A-fods (S-fods) and average ratios (error-bars ¼ 1 standard deviation) between the 0-th order asymmetric
and symmetric harmonic coefficients.

M. Bastiani et al. NeuroImage 158 (2017) 205–218
and symmetric fods, the proposed A-fod estimation routine does not
affect apparent fibre densities for corresponding peaks. This is also
confirmed by the ratios between the 0-th order spherical harmonic co-
efficients (used here as proxy for average fibre density) of A-fods and S-
fods that is consistently close to 1.

We further tested how well we can utilise these local estimates in the
proposed A-fod-based tractography algorithm. Conventional peak-based
tractography at μm resolution using the histology-extracted orientations
was considered to give ground-truth trajectories. The proposed tractog-
raphy method was applied to A-fods estimated at mm resolution, while
conventional tractography (Euler integration with trilinear interpola-
tion) was applied to S-fods and spatially constrained S-fods (i.e., the
second term of Eq. (3) now minimizes the difference between the sym-
metric fod (Bfeven) and the conjunction fod z). Fig. 8A shows results for
two different seed points. In both cases, A-fod-based tractography re-
duces the number of false turns and follows more accurately the
histology-derived trajectories. Importantly, when then underlying fibre
patterns are not particularly asymmetric, the results look very similar
when using peaks extracted either from S-fods or A-fods (Fig. 8B).
Moreover, applying the A-fod-based tractography strategy does not
change the results when tracking through a S-fod-based vector field.
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These results suggest that the proposed algorithm improves tracking
when asymmetric patterns are present, but does not have detrimental
effects in the absence of such patterns.

Finally, we explored the potential to resolve correctly and use fanning
polarity. We performed a topography-preservation experiment (see Fig. 4
and relevant section in Methods) to check how well organisation
revealed through a spreading fibre pattern is preserved after tracking in
the opposite direction, where trajectories are expected to converge back
to the same topography. Fig. 9 shows the results of the experiment for
both tractography approaches. Topography is better preserved when
using an A-fod-based tractography. In the peak-tracking case, 9% more
WM/GM boundary voxels projected streamlines back to the original seed
ROI, when using A-fods compared to S-fods. In the whole-fod case, 19%
more WM/GM boundary voxels projected back to the original seed ROI.
The reduction of false positives using A-fods suggests that the correct
fanning polarity is better captured.
4.2. In vivo results

Fig. 10 shows examples that qualitatively illustrate differences be-
tween A-fods and S-fods estimated using in-vivo HCP data. A-fods seem



Fig. 8. A) Peak-based tractography results using two seeds and four different vector fields (histology-based orientations at μm scale, peaks extracted from the symmetric, spatially
constrained symmetric and asymmetric fods at mm scale). Upper row shows the streamlines obtained when seeding from deep white matter. Bottom row shows the streamlines obtained
when seeding from the WM/GM boundary. Asymmetric fod-based tractography limits the number of false negatives (green arrow) and false positives (red arrows) when compared to the
ground truth obtained using histology. B) Peak-based tractography results using one seed and two different vector fields (peaks extracted from the symmetric and asymmetric fods at mm
scale). First panel shows results obtained when using classical symmetric tractography. Last two panels show results obtained using the proposed asymmetric tractography algorithm on the
two different vector fields.
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to capture complexity in cases where we would anticipate fibre pattern
asymmetry. For instance, they represent fibre fanning and polarity at the
gyral crown (red inset) and depict sharp bends and fans in the case of
complex fibre configurations (green inset). Moreover, they preserve fibre
crossings in regions where these are expected, such as in the centrum
semiovale (Fig. 9, blue inset).

To explore the effect of the neighbourhood term in the estimation,
Fig. 11A shows a comparison between the estimated A-fods, the A-fods
comprising only of even order spherical harmonics and the S-fods ob-
tained when setting λ ¼ 0:1 (i.e., performing spatially constrained
symmetric-only spherical deconvolution) and λ ¼ 0 (i.e., performing
traditional symmetric-only spherical deconvolution without any spatial
information) in two white matter ROIs. Considering only the even SH
coefficients makes the asymmetric estimate (i.e. with the neighbourhood
term) look very similar – but not identical – to the voxel-wise symmetric
estimate. This shows that there is a small amount of spatial regularization
in the A-fods, however the optimal fit to the voxel-wise signal is pre-
served (Fig. 11A). Moreover, applying a spatial constraint to S-fods seems
to affect the angular resolution of the reconstructed fods. To quantify the
comparison, we computed the correlation between the amplitudes of S-
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fods and the symmetric (i.e., even order SH) components of A-fods.
Considering all white matter voxels of 10 HCP subjects the average
correlation was 0.91 (median ¼ 0.96, std ¼ 0.14), confirming that the
two are very similar (Fig. 11B). The neighbourhood term does induce a
soft spatial regularization in the even components, however the main
differences come from the incorporation of the odd SH components and
their estimation through this term (leftmost column in Fig. 11A).

Fig. 12 shows the results of the in vivo topography-preserving
experiment in the left hemisphere for the group (n ¼ 10 subjects) and
for a single HCP subject (ID¼ 100408) using the whole-fod tractography
approach. Topography was found to be better preserved when using A-
fod-based tractography. More WM/GM boundary vertices projected back
to the original seed ROI when considering asymmetry. The mean of the
diagonal values averaged across 10 different subjects obtained using A-
fods (S-fods) whole-fod-based tractography is 77% (67%) in the left
hemisphere and 77% (68%) in the right hemisphere (Supplementary
Fig. S1). The average standard deviation of the diagonal elements ob-
tained using A-fods (S-fods) whole-fod-based tractography is 9.7%
(11.1%) in the left hemisphere and 10.2% (12.0%) in the right hemi-
sphere. The mean of the diagonal values averaged across 10 different



Fig. 9. Results of the topography preservation experiment (Fig. 4) performed using
symmetric and asymmetric fods. The vertical axis represents the percentage of correct
back-projections (i.e. percentage of deep WM locations that projected preferentially to
certain WM/GM boundary locations and were subsequently reached back by projections
from these WM/GM boundary locations). Asymmetric fods-based tractography gives
consistently better results using both a peak-based (left) and a whole-fod-based (right)
tractography approach. This is shown by a higher percentage of correct back-projections.
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subjects obtained using A-fods (S-fods) peak-based tractography is 49%
(40%) in the left hemisphere and 43% (40%) in the right hemisphere.
The average standard deviation of the diagonal elements obtained using
A-fods (S-fods) peak-based tractography is 23.6% (18.6%) in the left
hemisphere and 23.7% (20.0%) in the right hemisphere.

In the absence of ground-truth for the in-vivo data, we used similarity
of tractography predictions with results from a different modality to
indirectly evaluate the accuracy of results. Specifically, we performed a
seed-based connectivity analysis to test whether using A-fod-based
tractography improves the structural and functional connectivity profile
similarity. Two regions comprising the left and right temporoparietal
junction (TPJ) weremanually drawn on the cortical surface in MNI space.
5000 streamlines were seeded from each surface vertex within TPJ.
Fig. 10. Comparison between in symmetric (top row) and asymmetric fods (bottom row) overl
where fibres fan (red inset), bend sharply (green inset) or cross (blue inset).
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Streamlines were stopped when they reached the ipsilateral pial surface
or the mid-sagittal plane and counted when they crossed the WM/GM
boundary. These streamline counts across the whole WM/GM boundary
surface were obtained for 10 HCP subjects and the resulting matrices
were averaged after normalizing each of them by the total number of
streamlines that successfully reached the WM/GM boundary for each
subject. Functional connectivity matrices were also computed using
resting state fMRI data from the HCP (Smith et al., 2013). The correlation
between the average fMRI time-series of the TPJ with the time-series at
each cortical surface vertex was used to obtain a functional connectivity
map. The similarity between the functional and structural connectivity
profiles of the TPJ was compared and found to be improved when using
A-fod-based whole-fod tractography. Qualitatively, Fig. 13 shows that A-
fod based whole-fod tractography better matches the functional con-
nectivity strength between the left TPJ and the medial aspects of the
frontal lobe (Supplementary Fig. S2 shows the results obtained when
seeding from the right TPJ). To quantify the similarities, we computed
the partial correlation between the functional connectivity and the
structural connectivity profiles obtained using A-fod whole-fod-based
tractography, after regressing out the S-fod tractography results
(rleft ¼ 0.30, rright ¼ 0.26). Similarly, we computed the partial correlation
between the functional connectivity and S-fod-based tractography re-
sults, after regressing out the A-fod tractography results (rleft ¼ �0.26,
rright ¼ �0.22). These results illustrate that, when not taking into
consideration the information shared between S-fod and A-fod results, A-
fod tractography adds information that improves agreement with fMRI-
based predictions, while S-fod tractography does not.

Finally, Fig. 14 shows the power of even and odd order SH coefficients
for the A-fods estimated in the brain. The symmetry maps (top row,
power of even order coefficients) have a very good CNR when trying to
distinguish between white and grey matter and highlight areas where
fibres are extremely symmetrically organised (e.g. ventral corticospinal
tract). On the other hand, the asymmetry maps (middle row, power of
odd order coefficients) reveal areas where sub-voxel fibre patterns are
more complex than in the rest of deep white matter. Some examples
include the dorsolateral part of the thalamus, the bottom of the body of
the corpus callosum and regions peripheral to the centrum semiovale,
where fibres head towards cortex. The locations of such areas with
complex sub-voxel fibre configurations are consistent across individuals
(bottom row, probability maps of the asymmetric coefficient).
aid on a coronal FA map (subject ID ¼ 100408). The zoomed insets show 3 different ROIs



Fig. 11. In vivo regularization of the symmetric component. A) The ROI shown in each row is highlighted using a red square overlaid on the subject's FA map. Even order SH coefficients
are extracted from the original A-fods to obtain S-fods. These visually match the S-fods obtained by performing symmetric CSD, meaning that the optimal fit to the signal is preserved after a
small amount of spatial regularization. Full A-fod and its even component show sharper and better defined peaks when compared to the spatially constrained S-fod. B) Correlation map of
fod amplitudes (sampled from 252 evenly distributed points on a sphere) obtained from S-fods and symmetrised A-fods for a single subject (ID ¼ 100408) overlaid on top of the subject's
T1-weighted acquisition.

Fig. 12. Results of the topography preservation experiment performed on in vivo data
using a local whole-fod tractography approach. The matrices show the row-normalised
average streamline counts that project back to a patch in the IC, which was preferen-
tially projecting to the same cortical area. Top row shows the results averaged across 10
HCP subjects (IDs: 100307, 100408, 101915, 102816, 103414, 103515, 103818, 105115,
105216, 106016), bottom row shows the results for a single HCP subject (ID ¼ 100408).
The mean of the single subject diagonal values for the asymmetric case is 86.3% and
71.3% for the symmetric case. Using the proposed asymmetric fods-based tractography
algorithm, more streamlines project back to their original cluster within the internal
capsule. This is shown by higher values on the matrix diagonal.
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5. Discussion

In the present work we introduced a new comprehensive framework
to estimate asymmetric fods and track through complex geometries using
dMRI data. The framework extends classical non-parametric CSD-based
approaches by using information from each voxel's neighbourhood and
imposes a fibre continuity constraint to resolve asymmetric fibre pat-
terns. By using realistic fibre configurations as derived from high-
resolution histological data, we show that the added asymmetric infor-
mation can resolve realistic sub-voxel fibre configurations (e.g., fanning
and bending) and that it improves tractography.

Traditional local stepping tractography approaches do not necessarily
ensure fibre continuity. Furthermore, symmetric fods will always suggest
fibre dispersion in cases where fibres converge in one direction and fan
out in the opposite direction, leading to fanning out in both directions
(Jbabdi and Johansen-Berg, 2011). Therefore, to respect the fibre con-
tinuity assumption, it becomes crucial to take into account not only
orientations and incoming propagation direction of a streamline, but also
where the streamline lies within a voxel relative to the fod. We proposed
two new tractography solutions to this problem, one for each local
tracking strategy. Both algorithms aim to ensure that the propagation
directions reflect sub-voxel orientation information given the current
streamline endpoint.

Using realistic complex fibre patterns derived from histology we have
shown that A-fods obtained using the proposed approach are capable of
improving the representation of sharp bends as well as fanning polarity.
Moreover, the proposed approach improved the fod estimation also in
simulated voxels classified as being purely symmetric. This is because no
simulated noisy sub-voxel pattern is perfectly symmetric and the imposed
threshold to discriminate between asymmetric and symmetric voxels
does not ensure a perfectly binary distinction. The added information,
together with the proposed tractography approaches, is shown to be
valuable in yielding better reconstruction of connection's topographic
organisation. These topographies are highly relevant when studying
brain function as they reflect the ordered spatial organisation/segrega-
tion of sensory information and complex cognitive processes (Jbabdi
et al., 2013).

We also showed that A-fods representing asymmetric fibre fanning
and sharp bends are present in-vivo. Importantly, A-fods preserve fibre
crossings in regions where asymmetric configurations are less likely, such
as in the centrum semiovale. Areas where asymmetry is particularly
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pronounced seem to be very consistent across subjects (Fig. 14, bottom
row). This might hint to a potential use of this measure as a marker in
disorders where tract lateralization is compromised, but it is a topic that
goes beyond the scope of the present work. Similar to the results obtained
from histology using simulated realistic patterns, topographic properties
are better preserved also in-vivo, when using A-fod-based tractography.
Because of the lack of a proper in vivo gold standard for structural con-
nectivity, we used a multi-modal approach to test whether structural
connections from the TPJ as estimated using A-fod-based tractography
better reflect its functional connections. Previous studies have shown
that the TPJ is structurally and functionally connected to vast portions of



Fig. 13. Seed-based functional (first panel) and structural (second and third panels) connectivity maps averaged over 10 subjects (IDs: 100307, 100408, 101915, 102816, 103414,
103515, 103818, 105115, 105216, 106016) and overlaid on an inflated left hemisphere surface. Black asterisk identifies the TPJ seed region. Red arrows point at cortical areas with
obvious qualitative differences in connectivity strength between symmetric and asymmetric whole-fod-based tractography. To aid visualization, the functional connectivity map shows the
absolute value of the fMRI time-series correlation.
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the antero-medial and ventral prefrontal cortex (Mars et al., 2012). Our
rs-fMRI results confirm this pattern, but we have found a clear qualitative
and quantitative difference when looking at the structural connectivity
indices obtained using A- or S-fods. Asymmetric-fod-based tractography
results show an increase in seed-based structural connectivity to the
medial prefrontal cortex when compared to S-fod-based results. A further
partial correlation analysis shows that such increase in connectional
strength is correlated to the functional connectivity profile. This might be
hinting to the fact that, because of its capability to select only the
appropriate fod peaks, streamlines sampled using A-fod-based tractog-
raphy have a better chance to correctly reach distant cortical areas.

Previous approaches have been proposed to recover complex sub-
voxel fibre patterns using post-processing regularization techniques
(Barmpoutis et al., 2008; Ehricke et al., 2011), curve inference labelling
(Campbell et al., 2014; Savadjiev et al., 2006) and tractography (Rowe
et al., 2013). One notable approach infers A-fods directly from the data
by imposing a geometric fibre continuity constraint (Reisert et al., 2012).
Fig. 14. Power of the symmetric (top row) and asymmetric (middle row) component of the A-fo
results from 10 subjects (IDs: 100307, 100408, 101915, 102816, 103414, 103515, 103818, 10
coefficient value higher than 0.002 in more than 25% of the subjects. Both the asymmetric
coronal views).
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Our framework uses an asymmetric basis set to describe A-fods, which is
conveniently offered by the full (i.e., even and odd order) spherical
harmonics basis (i.e., the results do not depend on the discrete sampling
of the sphere) and distinguishes between tissue boundaries. Moreover,
we have thoroughly validated our method using realistic fibre configu-
rations and have shown clear benefits for tractography when explicitly
taking into account the asymmetry information, which is non-trivial and
core in our framework.

One limiting factor of the proposed method is that the width and
amplitude (i.e., apparent fibre density) of the fod will be influenced by
the chosen response function. Currently, the response function for each
tissue type and for each b-shell is the same across the whole volume. If
the response function itself captures a lot of fibre dispersion, the fods in
each voxel will look sharper and vice-versa (Parker et al., 2013). This is a
limitation shared with the traditional voxel-wise CSD approaches and
certain improvements can be explored (Roine et al., 2015; Tax et al.,
2014). Furthermore, to test whether our framework affects local
ds. The bottom row shows probability of asymmetry occurrence maps obtained by pooling
5115, 105216, 106016). The map illustrates voxels that consistently show an asymmetric
power and the probability maps are overlaid on the T1 MNI template (1 mm isotropic,
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apparent fibre densities (Raffelt et al., 2012), we looked at the difference
between the 0th–order spherical harmonic coefficient (as a probe for
apparent fibre density) of A-fods and S-fods. We found that, across white
matter, the correlation between the 0th-order coefficients of A-fods and S-
fods is equal to 0.997. We have also computed the median relative dif-

ference (
���� casym0 �csym0
0:5�ðcasym0 �csym0 Þ

����) within white matter and found that to be equal to

0.0066. This indicates that A-fods share a similar behaviour and limita-
tions with S-fods in representing apparent fibre densities.

Another limitation of the proposed tractography algorithm is the
necessity to have a rather conservative angular constraint. This is done to
prevent streamlines to take sharp and anatomically inaccurate turns in
deep white matter regions (Bastiani et al., 2012). At the interface be-
tween white and grey matter, though, white matter fibres change their
orientations abruptly (Cottaar et al., 2016; Sotiropoulos et al., 2013a).
Therefore, limiting the angle at each propagation step might prevent to
correctly reconstruct such sharp transitions. This could potentially be
solved by implementing a global tractography approach based on A-fods
that would allow us to relax the angular constraint and let fibres reaching
gyral walls to sharply bend at the interface between white and grey
matter (Reveley et al., 2015).
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