928 research outputs found

    Prospects for atomic magnetometers employing hollow core optical fibre

    Get PDF
    Presently, among the most demanding applications for highly sensitive magnetometers are Magnetocardiography (MCG) and Magnetoencephalography (MEG), where sensitivities of around 1pT.Hz<sup>-1/2</sup> and 1fT.Hz<sup>-1/2</sup> are required. Cryogenic Superconducting Quantum Interference Devices (SQUIDs) are currently used as the magnetometers. However, there has been some recent work on replacing these devices with magnetometers based on atomic spectroscopy and operating at room temperature. There are demonstrations of MCG and MEG signals measured using atomic spectroscopy These atomic magnetometers are based on chip-scale microfabricated components. In this paper we discuss the prospects of using photonic crystal optical fibres or hollow core fibres (HCFs) loaded with Rb vapour in atomic magnetometer systems. We also consider new components for magnetometers based on mode-locked semiconductor lasers for measuring magnetic field via coherent population trapping (CPT) in Rb loaded HCFs

    Signal Characteristics from Electromagnetic Cascades in Ice

    Get PDF
    We investigate the development of electromagnetic cascades in ice using a GEANT Monte Carlo simulation. We examine the Cherenkov pulse that is generated by the charge excess that develops and propagates with the shower. This study is important for the RICE experiment at the South Pole, as well as any test beam experiment which seeks to measure coherent Cherenkov radiation from an electromagnetic shower.Comment: 8 pages, 6 figure

    Passively mode-locked semiconductor laser for coherent population trapping in <sup>87</sup>Rb

    Get PDF
    Passively mode-locked semiconductor laser for coherent population trapping in &lt;sup&gt;87&lt;/sup&gt;Rb is reported. The laser material used is a 793nm GaAs/Al&lt;sub&gt;x&lt;/sub&gt;Ga&lt;sub&gt;1-x&lt;/sub&gt;As single quantum well (QW) graded index separate confinement heterostructure

    Investigation of the limits of nanoscale filopodial interactions

    Get PDF
    Mesenchymal stem cells are sensitive to changes in feature height, order and spacing. We had previously noted that there was an inverse relationship between osteoinductive potential and feature height on 15-, 55- and 90 nm-high titania nanopillars, with 15 nm-high pillars being the most effective substrate at inducing osteogenesis of human mesenchymal stem cells. The osteoinductive effect was somewhat diminished by decreasing the feature height to 8 nm, however, which suggested that there was a cut-off point, potentially associated with a change in cell–nanofeature interactions. To investigate this further, in this study, a scanning electron microscopy/three-dimensional scanning electron microscopy approach was used to examine the interactions between mesenchymal stem cells and the 8 and 15 nm nanopillared surfaces. As expected, the cells adopted a predominantly filopodial mode of interaction with the 15 nm-high pillars. Interestingly, fine nanoscale membrane projections, which we have termed ‘nanopodia,’ were also employed by the cells on the 8 nm pillars, and it seems that this is analogous to the cells ‘clinging on with their fingertips’ to this scale of features

    Self-folding nano- and micropatterned hydrogel tissue engineering scaffolds by single step photolithographic process

    Get PDF
    Current progress in tissue engineering is focused on the creation of environments in which cultures of relevant cells can adhere, grow and form functional tissue. We propose a method for controlled chemical and topographical cues through surface patterning of self-folding hydrogel films. This provides a conversion of 2D patterning techniques into a viable method of manufacturing a 3D scaffold. While similar bilayers have previously been demonstrated, here we present a faster and high throughput process for fabricating self-folding hydrogel devices incorporating controllable surface nanotopographies by serial hot embossing of sacrificial layers and photolithography

    Estimating uncertainty in multiple fibre reconstructions

    Get PDF
    Diffusion magnetic resonance imaging (MRI) is a technique that allows us to probe the microstructure of materials. The standard technique in diffusion MRI is diffusion tensor imaging (DTI). However, DTI can only model a single fibre orientation and fails in regions of complex microstructure. Multiple-fibre algorithms aim to overcome this limitation of DTI, but there remain many questions about which multiple-fibre algorithms are most promising and how best to exploit them in tractography. This work focuses on exploring the potential of multiple-fibre reconstructions and preparing them for transfer to the clinical arena. We provide a standardised framework for comparing multiple-fibre algorithms and use it for a robust comparison of standard algorithms, such as persistent angular structure (PAS) MRI, spherical deconvolution (SD), maximum entropy SD (MESD), constrained SD (CSD) and QBall. An output of this framework is the parameter settings of the algorithms that maximise the consistency of reconstructions. We show that non-linear algorithms, and CSD in particular, provide the most consistent reconstructions. Next, we investigate features of the reconstructions that can be exploited to improve tractography. We show that the peak shapes of multiple-fibre reconstructions can be used to predict anisotropy in the uncertainty of fibre-orientation estimates. We design an experiment that exploits this information in the probabilistic index of connectivity (PICo) tractography algorithm. We then compare PICo tractography results using information about peak shape and sharpness to estimate uncertainty with PICo results using only the peak sharpness to estimate uncertainty and show structured differences. The final contribution of this work is a robust algorithm for calibrating PICo that overcomes some of the limitations of the original algorithm. We finish with some early exploratory work that aims to estimate the distribution of fibre-orientations in a voxel using features of the reconstruction

    High-resolution microscopic diffusion anisotropy imaging in the human hippocampus at 3T

    Get PDF
    Purpose Several neurological conditions are associated with microstructural changes in the hippocampus that can be observed using DWI. Imaging studies often use protocols with whole-brain coverage, imposing limits on image resolution and worsening partial-volume effects. Also, conventional single-diffusion-encoding methods confound microscopic diffusion anisotropy with size variance of microscopic diffusion environments. This study addresses these issues by implementing a multidimensional diffusion-encoding protocol for microstructural imaging of the hippocampus at high resolution. Methods The hippocampus of 8 healthy volunteers was imaged at 1.5-mm isotropic resolution with a multidimensional diffusion-encoding sequence developed in house. Microscopic fractional anisotropy (”FA) and normalized size variance (CMD) were estimated using q-space trajectory imaging, and their values were compared with DTI metrics. The overall scan time was 1 hour. The reproducibility of the protocol was confirmed with scan–rescan experiments, and a shorter protocol (14 minutes) was defined for situations with time constraints. Results Mean ”FA (0.47) was greater than mean FA (0.20), indicating orientation dispersion in hippocampal tissue microstructure. Mean CMD was 0.17. The reproducibility of q-space trajectory imaging metrics was comparable to DTI, and microstructural metrics in the healthy hippocampus are reported. Conclusion This work shows the feasibility of high-resolution microscopic anisotropy imaging in the human hippocampus at 3 T and provides reference values for microstructural metrics in a healthy hippocampus

    Numerical Aspects of Bubble Nucleation

    Get PDF
    Bubble nucleation has been studied on lattices using phenomenological Langevin equations. Recently there have been theoretical motivations for using these equations. These studies also conclude that the simple Langevin description requires some modification. We study bubble nucleation on a lattice and determine effects of the modified Langevin equations.Comment: Talk given at DPF2000, Columbus, Ohio; 4 pages, 4 figure

    Addendum to "Coherent radio pulses from GEANT generated electromagnetic showers in ice"

    Full text link
    We reevaluate our published calculations of electromagnetic showers generated by GEANT 3.21 and the radio frequency pulses they produce in ice. We are prompted by a recent report showing that GEANT 3.21-modeled showers are sensitive to internal settings in the electron tracking subroutine. We report the shower and pulse characteristics obtained with different settings of GEANT 3.21 and with GEANT 4. The default setting of electron tracking in GEANT 3.21 we used in previous work speeds up the shower simulation at the cost of information near the end of the tracks. We find that settings tracking electron and positron to lower energy yield a more accurate calculation, a more intense shower, and proportionately stronger radio pulses at low frequencies. At high frequencies the relation between shower tracking algorithm and pulse spectrum is more complex. We obtain radial distributions of shower particles and phase distributions of pulses from 100 GeV showers that are consistent with our published results.Comment: 4 pages, 3 figure
    • 

    corecore