16 research outputs found

    CDM Accelerating Cosmology as an Alternative to LCDM model

    Full text link
    A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this model the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Λ\LambdaCDM model. For a spatially flat Universe, as predicted by inflation (Ωdm+Ωbaryon=1\Omega_{dm}+\Omega_{baryon}=1), it is found that the effectively observed matter density parameter is Ωmeff=1−α\Omega_{meff} = 1- \alpha, where α\alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires α∼0.71\alpha\sim 0.71 so that Ωmeff∼0.29\Omega_{meff} \sim 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.Comment: 6 pages, 3 figure

    MSLED, Neutrino Oscillations and the Cosmological Constant

    Full text link
    We explore the implications for neutrino masses and mixings within the minimal version of the supersymmetric large-extra-dimensions scenario (MSLED). This model was proposed in {\tt hep-ph/0404135} to extract the phenomenological implications of the promising recent attempt (in {\tt hep-th/0304256}) to address the cosmological constant problem. Remarkably, we find that the simplest couplings between brane and bulk fermions within this approach can lead to a phenomenologically-viable pattern of neutrino masses and mixings that is also consistent with the supernova bounds which are usually the bane of extra-dimensional neutrino models. Under certain circumstances the MSLED scenario can lead to a lepton mixing (PMNS) matrix close to the so-called bi-maximal or the tri-bimaximal forms (which are known to provide a good description of the neutrino oscillation data). We discuss the implications of MSLED models for neutrino phenomenology.Comment: 38 pages, 1 figure; Reposted with a few additional reference

    Comparing two approaches to Hawking radiation of Schwarzschild-de Sitter black holes

    Full text link
    We study two different ways to analyze the Hawking evaporation of a Schwarzschild-de Sitter black hole. The first one uses the standard approach of surface gravity evaluated at the possible horizons. The second method derives its results via the Generalized Uncertainty Principle (GUP) which offers a yet different method to look at the problem. In the case of a Schwarzschild black hole it is known that this methods affirms the existence of a black hole remnant (minimal mass MminM_{\rm min}) of the order of Planck mass mplm_{\rm pl} and a corresponding maximal temperature TmaxT_{\rm max} also of the order of mplm_{\rm pl}. The standard T(M)T(M) dispersion relation is, in the GUP formulation, deformed in the vicinity of Planck length lpll_{\rm pl} which is the smallest value the horizon can take. We generalize the uncertainty principle to Schwarzschild-de Sitter spacetime with the cosmological constant Λ=1/mΛ2\varLambda=1/m_\varLambda^2 and find a dual relation which, compared to MminM_{\rm min} and TmaxT_{\rm max}, affirms the existence of a maximal mass MmaxM_{\rm max} of the order (mpl/mΛ)mpl(m_{\rm pl}/m_\varLambda)m_{\rm pl}, minimum temperature Tmin∼mΛT_{\rm min} \sim m_\varLambda. As compared to the standard approach we find a deformed dispersion relation T(M)T(M) close to lpll_{\rm pl} and in addition at the maximally possible horizon approximately at rΛ=1/mΛr_\varLambda=1/m_\varLambda. T(M)T(M) agrees with the standard results at lpl≪r≪rΛl_{\rm pl} \ll r \ll r_\varLambda (or equivalently at Mmin≪M≪MmaxM_{\rm min} \ll M \ll M_{\rm max}).Comment: new references adde

    Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures

    Get PDF
    We present a versatile strategy to prepare a range of nanostructured poly(styrene)-block-poly(2-vinyl pyridine) copolymer particles with tunable interior morphology and controlled size by a simple solvent exchange procedure. A key feature of this strategy is the use of functional block copolymers incorporating reactive pyridyl moieties which allow the absorption of metal salts and other inorganic precursors to be directed. Upon reduction of the metal salts, well-defined hybrid metal nanoparticle arrays could be prepared, whereas the use of oxide precursors followed by calcination permits the synthesis of silica and titania particles. In both cases, ordered morphologies templated by the original block copolymer domains were obtained

    Free Expression and the Wide World of Sports

    No full text
    corecore