669 research outputs found
Cosmic censorship and spherical gravitational collapse with tangential pressure
We study the spherical gravitational collapse of a compact object under the
approximation that the radial pressure is identically zero, and the tangential
pressure is related to the density by a linear equation of state. It turns out
that the Einstein equations can be reduced to the solution of an integral for
the evolution of the area radius. We show that for positive pressure there is a
finite region near the center which necessarily expands outwards, if collapse
begins from rest. This region could be surrounded by an inward moving one which
could collapse to a singularity - any such singularity will necessarily be
covered by a horizon. For negative pressure the entire object collapses
inwards, but any singularities that could arise are not naked. Thus the nature
of the evolution is very different from that of dust, even when the ratio of
pressure to density is infinitesimally small.Comment: 16 pages, Latex file, two figures, uses epsf.st
Historical ‘signposts’ and other temporal indicators in the Czech lexicon
This article posits that the Czechs employ a great many historical markers, previously applied to other events of national importance, which help to shape collective memory and right the ‘wrongs’ of the past. It is argued that these temporal indicators share a number of clearly defined characteristics, and that their use is too systematic and calculated to be merely a function of the constraints of the lexicon. The first part of the study considers in detail questions of semantics (especially the distinction between denotation and connotation), the lexicographical sources available to the researcher, and the lexical ‘signpost’ in context, while the second part focuses on practical examples of lexical re-appropriation since 1918, with particular reference to dictionaries and the Czech National Corpus.University of Wolverhampto
Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and
unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions.
As their defining property, these theories admit the action of a global or
local symmetry group that is (i) simple, and (ii) acts irreducibly on all the
vector fields of the theory, including the ``graviphoton''. Restricting
ourselves to the theories that originate from five dimensions via dimensional
reduction, we find that the generic Jordan family of MESGTs with the scalar
manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four
dimensions with the unifying global symmetry group SO(2,n). Of these theories
only one can be gauged so as to obtain a unified YMESGT with the gauge group
SO(2,1). Three of the four magical supergravity theories defined by simple
Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions.
Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with
gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family
and the theories whose scalar manifolds are homogeneous but not symmetric do
not lead to unified MESGTs in four dimensions. The three infinite families of
unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras,
whose scalar manifolds are non-homogeneous, do not lead directly to unified
MESGTs in four dimensions under dimensional reduction. However, since their
manifolds are non-homogeneous we are not able to completely rule out the
existence of symplectic sections in which these theories become unified in four
dimensions.Comment: 47 pages; latex fil
An integral equation approach to effective interactions between polymers in solution
We use the thread model for linear chains of interacting monomers, and the
``polymer reference interaction site model'' (PRISM) formalism to determine the
monomer-monomer pair correlation function for dilute and
semi-dilute polymer solutions, over a range of temperatures from very high
(where the chains behave as self-avoiding walks) to below the
temperature, where phase separation sets in. An inversion procedure, based on
the HNC integral equation, is used to extract the effective pair potential
between ``average'' monomers on different chains. An accurate relation between
, [the pair correlation function between the polymer
centers of mass (c.m.)], and the intramolecular form factors is then used to
determine , and subsequently extract the effective c.m.-c.m. pair
potential by a similar inversion procedure. depends on
temperature and polymer concentration, and the predicted variations are in
reasonable agreement with recent simulation data, except at very high
temperatures, and below the temperature.Comment: 13 pages, 13 figures, revtex ; revised versio
Moduli Stabilization from Fluxes in a Simple IIB Orientifold
We study novel type IIB compactifications on the T^6/Z_2 orientifold. This
geometry arises in the T-dual description of Type I theory on T^6, and one
normally introduces 16 space-filling D3-branes to cancel the RR tadpoles. Here,
we cancel the RR tadpoles either partially or fully by turning on three-form
flux in the compact geometry. The resulting (super)potential for moduli is
calculable. We demonstrate that one can find many examples of N=1
supersymmetric vacua with greatly reduced numbers of moduli in this system. A
few examples with N>1 supersymmetry or complete supersymmetry breaking are also
discussed.Comment: 49 pages, harvmac big; v2, corrected some typo
Is it the boundaries or disorder that dominates electron transport in semiconductor `billiards'?
Semiconductor billiards are often considered as ideal systems for studying
dynamical chaos in the quantum mechanical limit. In the traditional picture,
once the electron's mean free path, as determined by the mobility, becomes
larger than the device, disorder is negligible and electron trajectories are
shaped by specular reflection from the billiard walls alone. Experimental
insight into the electron dynamics is normally obtained by magnetoconductance
measurements. A number of recent experimental studies have shown these
measurements to be largely independent of the billiards exact shape, and highly
dependent on sample-to-sample variations in disorder. In this paper, we discuss
these more recent findings within the full historical context of work on
semiconductor billiards, and offer strong evidence that small-angle scattering
at the sub-100 nm length-scale dominates transport in these devices, with
important implications for the role these devices can play for experimental
tests of ideas in quantum chaos.Comment: Submitted to Fortschritte der Physik for special issue on Quantum
Physics with Non-Hermitian Operator
Further evidence of the link between activity and metallicity using the flaring properties of stars in the Kepler field
The magnetic activity level of low-mass stars is known to vary as a function
of the physical properties of the star. Many studies have shown that the
stellar mass and rotation are both important parameters that determine magnetic
activity levels. In contrast, the impact of a star's chemical composition on
magnetic activity has received comparatively little attention. Data sets for
traditional activity proxies, e.g. X-ray emission or calcium emission, are not
large enough to search for metallicity trends in a statistically meaningful
way. Recently, studies have used the photometric variability amplitude as a
proxy for magnetic activity to investigate the role of metallicity because it
can be relatively easily measured for large samples of stars. These studies
find that magnetic activity and metallicity are positively correlated. In this
work, we investigate the link between activity and metallicity further by
studying the flaring properties of stars in the Kepler field. Similar to the
photometric variability, we find that flaring activity is stronger in more
metal-rich stars for a fixed mass and rotation period. This result adds to a
growing body of evidence that magnetic field generation is correlated with
metallicity.Comment: 6 pages, 5 figures, accepted for publication in MNRA
The impact of stellar metallicity on rotation and activity evolution in the Kepler field using gyro-kinematic ages
In recent years, there has been a push to understand how chemical composition
affects the magnetic activity levels of main sequence low-mass stars. Results
indicate that more metal-rich stars are more magnetically active for a given
stellar mass and rotation period. This metallicity dependence has implications
for how the rotation periods and activity levels of low-mass stars evolve over
their lifetimes. Numerical modelling suggests that at late ages more metal-rich
stars should be rotating more slowly and be more magnetically active. In this
work, we study the rotation and activity evolution of low-mass stars using a
sample of Kepler field stars. We use the gyro-kinematic age dating technique to
estimate ages for our sample and use the photometric activity index as our
proxy for magnetic activity. We find clear evidence that, at late ages, more
metal-rich stars have spun down to slower rotation in agreement with the
theoretical modeling. However, further investigation is required to
definitively determine whether the magnetic activity evolution occurs in a
metallicity dependent way.Comment: 10 pages, 9 figures. This paper has undergone peer review at MNRAS
with only a very minor revision requested in the last round of comment
- …
