386 research outputs found

    The Simultaneous Effects of Spatial and Social Networks on Cholera Transmission

    Get PDF
    This study uses social network and spatial analytical methods simultaneously to understand cholera transmission in rural Bangladesh. Both have been used separately to incorporate context into health studies, but using them together is a new and recent approach. Data include a spatially referenced longitudinal demographic database consisting of approximately 200,000 people and a database of all laboratory-confirmed cholera cases from 1983 to 2003. A complete kinship-based network linking households is created, and distance matrices are also constructed to model spatial relationships. A spatial error-social effects model tested for cholera clustering in socially linked households while accounting for spatial factors. Results show that there was social clustering in five out of twenty-one years while accounting for both known and unknown environmental variables. This suggests that environmental cholera transmission is significant and social networks also influence transmission, but not as consistently. Simultaneous spatial and social network analysis may improve understanding of disease transmission

    Interlayer Exchange Coupling in (Ga,Mn)As-based Superlattices

    Full text link
    The interlayer coupling between (Ga,Mn)As ferromagnetic layers in all-semiconductor superlattices is studied theoretically within a tight-binding model, which takes into account the crystal, band and magnetic structure of the constituent superlattice components. It is shown that the mechanism originally introduced to describe the spin correlations in antiferromagnetic EuTe/PbTe superlattices, explains the experimental results observed in ferromagnetic semiconductor structures, i.e., both the antiferromagnetic coupling between ferromagnetic layers in IV-VI (EuS/PbS and EuS/YbSe) superlattices as well as the ferromagnetic interlayer coupling in III-V ((Ga,Mn)As/GaAs) multilayer structures. The model allows also to predict (Ga,Mn)As-based structures, in which an antiferromagnetic interlayer coupling could be expected.Comment: 4 pages, 3 figure

    Cholera Transmission in Bangladesh: Social Networks and Neighborhoods

    Get PDF
    Transmission of infectious pathogens across networks is well-documented, yet remains primarily focused on diseases spread by sexual contact. Such analytical tools, however, may also facilitate understanding of how other types of health outcomes are related to physical and social contacts. This research examines the relationship between cholera incidence and the social network that links households in rural Bangladesh. Using twenty-one years of longitudinal demographic and health data, clustering of similar disease rates in the network was measured and compared to spatial autocorrelation of cholera at the neighborhood level. Results indicate that rates are significantly concentrated amongst households within the same local environment, and that social clustering is only evident during certain years examined. These outcomes suggest that intervention efforts should place priority on identifying local-level environmental factors, but also consider the potential of networks as they assist transmission, as well as their role in interactions within a defined neighborhood

    Half-metallic ferrimagnet formed by substituting Fe for Mn in semiconductor MnTe

    Full text link
    A ternary ferrimagnetic half-metal, constructed through substituting 25% Fe for Mn in zincblende semiconductor MnTe, is predicted in terms of accurate first-principles calculations. It has a large half-metallic (HM) gap of 0.54eV and its ferrimagnetic order is very stable against other magnetic fluctuations. The HM ferrimagnetism is formed because the complete moment compensation in the antiferromagnetic MnTe is replaced by an uncomplete one in the Fe-substituted MnTe. This should make a novel approach to new HM materials. The half-metal could be fabricated because Fe has good affinity with Mn, and useful for spintronics.Comment: 5 pages with figures include

    Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging

    Get PDF
    Disruption of the circadian clock, which directs rhythmic expression of numerous output genes, accelerates aging. To enquire how the circadian system protects aging organisms, here we compare circadian transcriptomes in heads of young and old Drosophila melanogaster. The core clock and most output genes remained robustly rhythmic in old flies, while others lost rhythmicity with age, resulting in constitutive over- or under-expression. Unexpectedly, we identify a subset of genes that adopted increased or de novo rhythmicity during aging, enriched for stress-response functions. These genes, termed late-life cyclers, were also rhythmically induced in young flies by constant exposure to exogenous oxidative stress, and this upregulation is CLOCK-dependent. We also identify age-onset rhythmicity in several putative primary piRNA transcripts overlapping antisense transposons. Our results suggest that, as organisms age, the circadian system shifts greater regulatory priority to the mitigation of accumulating cellular stress
    corecore