249 research outputs found

    Effective DSP Methods of PSK Feedback Timing Synchronization

    Get PDF
    This paper deals with simplification and improvement of data timing synchronization algorithms. Timing error synchronizers are usually the most complicated subsystems in the demodulator, and limit the DSP technique used for the high-rate application. This article is focused on feedback timing estimators for PSK modulation schemes, and shows modifications of widely used algorithms, that are suitable for the DSP implementation, as well as reach better parameters of the detection process. The methods applied in the evaluation of a timing error detector, which is a crucial part of the synchronizer, are described in the last part

    NASA newsletters for the Weber Student Shuttle Involvement Project

    Get PDF
    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix

    Trapping of chiral enolates generated by Lewis acid promoted conjugate addition of Grignard reagents to unreactive Michael acceptors by various electrophiles

    Get PDF
    Here we show trapping of chiral enolates with carbenium ions, Michael acceptors, and bromine. Silyl ketene aminals, disilyl acetals, and aza-enolates were obtained via Lewis acid mediated enantioselective conjugate addition of Grignard reagents to unsaturated amides, carboxylic acids and alkenyl heterocycles

    Primary mucin-producing urothelial-type adenocarcinoma of the prostatic urethra diagnosed on TURP: a case report and review of literature

    Get PDF
    Mucin-producing urothelial-type adenocarcinoma of the prostatic urethra is extremely rare. These lesions must be differentiated from other mucinous tumors including mucin-producing prostatic adenocarcinoma and metastases from either colonic or bladder primaries. We report here a case of urothelial-type adenocarcinoma arising from the prostatic urethra. The patient is an 81 year-old man with a history of pT1 urothelial cell carcinoma of the bladder status post trans-urethral resection of bladder tumor (TURBT) who initially presented with irritative lower urinary tract symptoms and mucosuria refractory to Flomax and finasteride. A shared decision was made for the patient to undergo trans-urethral resection of prostate (TURP). At the time of surgery, a papillary tumor emanating from the prostatic urethra was found and no urothelial lesions were noted in the bladder. Pathology of the resected prostatic chips revealed an invasive adenocarcinoma with intestinal-type differentiation that stained positive for CK7, CK20, and villin, but negative for PSA, PSAP, uroplakin, and CDX-2. Colonoscopy was normal and CT scan did not show any evidence of colonic lesions nor visceral or lymph node metastases. Thus, the patient was diagnosed with a primary urothelial-type adenocarcinoma of the prostatic urethra. Herein we review the literature regarding this unusual entity, and discuss the differential diagnosis, immunohistochemistry, and the importance of correctly identifying this rare tumor

    The Frontier Fields Lens Modeling Comparison Project

    Get PDF
    Gravitational lensing by clusters of galaxies offers a powerful probe of their structure and mass distribution. Deriving a lens magnification map for a galaxy cluster is a classic inversion problem and many methods have been developed over the past two decades to solve it. Several research groups have developed techniques independently to map the predominantly dark matter distribution in cluster lenses. While these methods have all provided remarkably high precision mass maps, particularly with exquisite imaging data from the Hubble Space Telescope (HST), the reconstructions themselves have never been directly compared. In this paper, we report the results of comparing various independent lens modeling techniques employed by individual research groups in the community. Here we present for the first time a detailed and robust comparison of methodologies for fidelity, accuracy and precision. For this collaborative exercise, the lens modeling community was provided simulated cluster images -- of two clusters Ares and Hera -- that mimic the depth and resolution of the ongoing HST Frontier Fields. The results of the submitted reconstructions with the un-blinded true mass profile of these two clusters are presented here. Parametric, free-form and hybrid techniques have been deployed by the participating groups and we detail the strengths and trade-offs in accuracy and systematics that arise for each methodology. We note in conclusion that lensing reconstruction methods produce reliable mass distributions that enable the use of clusters as extremely valuable astrophysical laboratories and cosmological probes.Comment: 38 pages, 25 figures, submitted to MNRAS, version with full resolution images can be found at http://pico.bo.astro.it/~massimo/papers/FFsims.pd

    The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    Get PDF
    Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy

    Association of Certain Characters in a Collection of Wheat X Wheatgrass Hybrids

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Small Sample Mix Design for Full Depth Reclamation: Workshop Student Guide

    Get PDF
    5-6271-03This product is the guidebook used in the workshop on small sample mix design for full depth reclamation

    Involvement of Schizosaccharomyces pombe rrp1+ and rrp2+ in the Srs2- and Swi5/Sfr1-dependent pathway in response to DNA damage and replication inhibition

    Get PDF
    Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate–induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway
    • 

    corecore