1,497 research outputs found

    Transition-metal-free Oxidative Coupling Reactions for the Formation of C–C and C–N Bonds Mediated by TEMPO and its Derivatives

    Get PDF
    The application of nitroxides for the development of new synthetic methods and their implementation in polymer chemistry, material science and beyond is one of the major research topics in our laboratory in the institute of organic chemistry at the WWU Münster. This short review focuses on our recent progress towards nitroxide-based transition-metal-free oxidative coupling reactions. The demand for organic surrogates for transition metals in such transformations is in our eyes unquestionable, since environmental and economic issues have become progressively more important in recent years. For this purpose, the 2,2,6,6-tetramethylpiperidine-N-oxyl radical (TEMPO) is shown to be a highly efficient oxidant for the homo- and cross-coupling of Grignard reagents. This powerful C–C bond forming strategy allows the generation of conjugated polymers from bifunctional Grignard reagents. Moreover, cross-coupling of alkynyl Grignard compounds and nitrones can be accomplished under aerobic atmosphere with catalytic amounts of TEMPO. It is also shown that TEMPO-derived N-oxoammonium salts can act as suitable oxidants for formation of C–N bonds between non-preactivated benzoxazoles and secondary amines under metal-free conditions

    The Influence of Surface Preparation, Chewing Simulation, and Thermal Cycling on the Phase Composition of Dental Zirconia

    Get PDF
    The effect of dental technical tools on the phase composition and roughness of 3/4/5 yttria-stabilized tetragonal zirconia polycrystalline (3y-/4y-/5y-TZP) for application in prosthetic dentistry was investigated. Additionally, the X-ray diffraction methods of Garvie-Nicholson and Rietveld were compared in a dental restoration context. Seven plates from two manufacturers, each fabricated from commercially available zirconia (3/4/5 mol%) for application as dental restorative material, were stressed by different dental technical tools used for grinding and polishing, as well as by chewing simulation and thermocycling. All specimens were examined via laser microscopy (surface roughness) and X-ray diffraction (DIN EN ISO 13356 and the Rietveld method). As a result, the monoclinic phase fraction was halved by grinding for the 3y-TZP and transformed entirely into one of the tetragonal phases by polishing/chewing for all specimens. The tetragonal phase t is preferred for an yttria content of 3 mol% and phase t″ for 5 mol%. Mechanical stress, such as polishing or grinding, does not trigger low-temperature degradation (LTD), but it fosters a phase transformation from monoclinic to tetragonal under certain conditions. This may increase the translucency and deteriorate the mechanical properties to some extent

    Influence of Manufacturing Regimes on the Phase Transformation of Dental Zirconia

    Get PDF
    Background: The influence of typical manufacturing regimes for producing fixed dental prostheses (FDPs) from yttria partly-stabilized zirconia polycrystals (3Y/4Y/5Y-TZP) on the phase composition is quantified. Methods: Fixed dental prostheses (FDPs) were designed using a CAD process and machined from different Y-TZP blanks from two manufacturers differing in yttria contents. Subsequent to sintering, the FDPs were glaze fired and air-blasted using alumina particles. Phase composition was determined with X-ray diffraction and quantified with Rietveld refinement. Results: The blanks from VITA Zahnfabrik (VITA YZ HT, VITA YZ ST, VITA YZ XT) and Dental Direct (DD Bio ZX2, DD cube ONE, DD cube X2) featured a rhombohedral portion with rather small crystallites and a small monoclinic portion for 3Y/4Y-TZPs, which increased after machining and disappeared after sintering. Glaze firing and air-blasting with alumina particles had no significant influence on the phase composition. Conclusion: The phase history of dental zirconia is revealed, which may have implications on further processing and aging of the FDP (e.g. low temperature degradation) in mouth

    Magic, Emotion and Practical Metabolism:Affective Praxis in Sartre and Collingwood

    Get PDF
    This article develops a new way of understanding the integration of emotions in practical life and the practical appraisal of emotions, drawing on insights from both J-P. Sartre and R. G. Collingwood. I develop a concept of ‘practical metabolism’ and show that emotions need to be understood not only as transformations from determinate to indeterminate practical intuitions, but also as transformations in the reverse direction. Firstly, I provide a new conception of the dynamic phenomenal structure of the emotions that can resolve significant tensions in the Sartre’s theory. Secondly, I develop that theory to shed light on the diverse socially mediated roles of emotions in practical life by drawing on Collingwood’s philosophy of magic. Thirdly, I deploy the notion of practical metabolism to address the appraisal of emotions, setting out a framework for understanding the various ways in which emotional expression is subject to structural breakdown

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore