657 research outputs found
Elk Contact Patterns and Potential Disease Transmission
Understanding the drivers of contact rates among individuals is critical to understanding disease dynamics and implementing targeted control measures. We studied the interaction patterns of 149 female elk (Cervus elaphus) distributed across five different regions of western Wyoming over three years, defining a contact as an approach within one body length (~2m). Using hierarchical models that account for correlations within individuals, pairs and groups, we found that pairwise contact rates within a group declined by a factor of three as group sizes increased 30-fold. Meanwhile, per capita contact rates increased with group size due to the increasing number of potential pairs. We found similar patterns for the duration of contacts. Supplemental feeding of elk had a limited impact on pairwise interaction rates and durations, but increased per capita rates more than two times higher. Variation in contact patterns were driven more by environmental factors such as group size than either individual or pairwise differences. Female elk in this region fall between the expectation of contact rates that linearly increase with group size (as assumed by pseudo-mass action models of disease transmission) or are constant with changes in group size (as assumed by frequency dependent transmission models). Our statistical approach decomposes the variation in contact rate into individual, dyadic, and environmental effects, which provides insight into those factors that are important for effective disease control programs
SUSY Survey with Inclusive Muon and Same-Sign Dimuon Accompanied by Jets and MET with CMS
Generic signatures of supersymmetry with R-parity conservation include those of single isolated muons or like-sign isolated dimuon pairs, accompanied with energetic jets and missing transverse energy. The ability of CMS to discover supersymmetry with these signals is estimated for 10 fb^{-1} of data collected with the inclusive single-muon and dimuon High-Level-Trigger paths. The selection criteria are optimized and the systematic effects are studied for a single low-mass benchmark point of the constrained MSSM with m_0 = 60,GeV/c^2, m_{1/2} = 250,GeVc^2, tan beta=10, A_0=0 and mu> 0. Discovery contours in the m_0, m_{1/2}) plane are presented for integrated luminosities ranging from 1 to 100, fb^{-1}
Tevatron-for-LHC Report: Preparations for Discoveries
This is the "TeV4LHC" report of the "Physics Landscapes" Working Group,
focused on facilitating the start-up of physics explorations at the LHC by
using the experience gained at the Tevatron. We present experimental and
theoretical results that can be employed to probe various scenarios for physics
beyond the Standard Model.Comment: 222 pp., additional contribution added, typos/layout correcte
Female Elk Contacts Are Neither Frequency Nor Density Dependent
Identifying drivers of contact rates among individuals is critical to understanding disease dynamics and implementing targeted control measures. We studied the interaction patterns of 149 female elk (Cervus canadensis) distributed across five different regions of western Wyoming over three years, defining a contact as an approach within one body length (∼2 m). Using hierarchical models that account for correlations within individuals, pairs, and groups, we found that pairwise contact rates within a group declined by a factor of three as group sizes increased 33-fold. Per capita contact rates, however, increased with group size according to a power function, such that female elk contact rates fell in between the predictions of density- or frequency-dependent disease models. We found similar patterns for the duration of contacts. Our results suggest that larger elk groups are likely to play a disproportionate role in the disease dynamics of directly transmitted infections in elk. Supplemental feeding of elk had a limited impact on pairwise interaction rates and durations, but per capita rates were more than two times higher on feeding grounds. Our statistical approach decomposes the variation in contact rate into individual, dyadic, and environmental effects, and provides insight into factors that may be targeted by disease control programs. In particular, female elk contact patterns were driven more by environmental factors such as group size than by either individual or dyad effects
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV
A search for new physics is presented based on an event signature of at least
three jets accompanied by large missing transverse momentum, using a data
sample corresponding to an integrated luminosity of 36 inverse picobarns
collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector
at the LHC. No excess of events is observed above the expected standard model
backgrounds, which are all estimated from the data. Exclusion limits are
presented for the constrained minimal supersymmetric extension of the standard
model. Cross section limits are also presented using simplified models with new
particles decaying to an undetected particle and one or two jets
Recommended from our members
Female elk contacts are neither frequency nor density dependent
Identifying drivers of contact rates among individuals is critical to understanding disease dynamics and implementing targeted control measures. We studied the interaction patterns of 149 female elk (Cervus canadensis) distributed across five different regions of
western Wyoming over three years, defining a contact as an approach within one body length
(~2 m). Using hierarchical models that account for correlations within individuals, pairs, and
groups, we found that pairwise contact rates within a group declined by a factor of three as
group sizes increased 33-fold. Per capita contact rates, however, increased with group size
according to a power function, such that female elk contact rates fell in between the
predictions of density- or frequency-dependent disease models. We found similar patterns for
the duration of contacts. Our results suggest that larger elk groups are likely to play a
disproportionate role in the disease dynamics of directly transmitted infections in elk.
Supplemental feeding of elk had a limited impact on pairwise interaction rates and durations,
but per capita rates were more than two times higher on feeding grounds. Our statistical
approach decomposes the variation in contact rate into individual, dyadic, and environmental
effects, and provides insight into factors that may be targeted by disease control programs. In
particular, female elk contact patterns were driven more by environmental factors such as
group size than by either individual or dyad effects.KEYWORDS: Cervus canadensis, contact rate, proximity loggers, elk, hierarchical models, super-spreading events, supplemental feeding, Greater Yellowstone Ecosystem, brucellosis, Wyoming, USA, disease model
Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV
The production of b jets in association with a Z/gamma* boson is studied
using proton-proton collisions delivered by the LHC at a centre-of-mass energy
of 7 TeV and recorded by the CMS detector. The inclusive cross section for
Z/gamma* + b-jet production is measured in a sample corresponding to an
integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross
section with Z/gamma* to ll (where ll = ee or mu mu) for events with the
invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level
with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and
the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.)
+(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also
studied and found to be in agreement with the predictions made by the MadGraph
event generator with the parton shower and the hadronisation performed by
PYTHIA.Comment: Submitted to the Journal of High Energy Physic
- …