13 research outputs found

    Association of Hepatitis C Virus—Specific CD8+ T Cells with Viral Clearance in Acute Hepatitis C

    Get PDF
    CD8+ T lymphocytes play a major role in antiviral immune defense. Their significance for acute hepatitis C is unclear. Our aim was to correlate the CD8+ T cell response with the outcome of infection. Eighteen patients with acute hepatitis C and 19 normal donors were studied. Hepatitis C virus (HCV)—specific CD8+ T cells were identified in the enzyme-linked immunospot assay by their interferon-γ (IFN-γ) production after specific stimulation. The highest numbers of IFN-γ—producing HCV-specific CD8+ T cells were found in patients with acute hepatitis C and a self-limited course of disease during the first 6 months after onset of disease, but these numbers dropped thereafter to undetectable levels. The differences in responsiveness between patients with self-limited disease versus patients with a chronic course were statistically significant (P < .001). Our data show that the number of IFN—γ-producing HCV-specific CD8+ T cells during the first 6 months after onset of disease is associated with eradication of the HCV infectio

    Association of Hepatitis C Virus—Specific CD8+ T Cells with Viral Clearance in Acute Hepatitis C

    Get PDF
    CD8+ T lymphocytes play a major role in antiviral immune defense. Their significance for acute hepatitis C is unclear. Our aim was to correlate the CD8+ T cell response with the outcome of infection. Eighteen patients with acute hepatitis C and 19 normal donors were studied. Hepatitis C virus (HCV)—specific CD8+ T cells were identified in the enzyme-linked immunospot assay by their interferon-γ (IFN-γ) production after specific stimulation. The highest numbers of IFN-γ—producing HCV-specific CD8+ T cells were found in patients with acute hepatitis C and a self-limited course of disease during the first 6 months after onset of disease, but these numbers dropped thereafter to undetectable levels. The differences in responsiveness between patients with self-limited disease versus patients with a chronic course were statistically significant (P < .001). Our data show that the number of IFN—γ-producing HCV-specific CD8+ T cells during the first 6 months after onset of disease is associated with eradication of the HCV infection

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Genetic insights into resting heart rate and its role in cardiovascular disease

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development
    corecore