233 research outputs found
The art of Patient and Public Involvement : Exploring ways to research and reduce air pollution through art-based community workshops - a reflective paper
In this reflective paper we outline and discuss our art-based Patient and Public Involvement (PPI) approach. This exercise held two broad objectives. Firstly, to assist policy makers in understanding the types of interventions communities will find acceptable to address the problem of poor air quality, and secondly, to ascertain community views about our research plans to explore the impact of the planned interventions on neighbourhoods. We reflect on both our approach and the emergent conversations from the PPI activity. Attendees contributed to the process and stressed the importance of not burdening poor neighbourhoods with costly charges as that would ameliorate one health problem but generate others as a consequence of additional financial burden. Equally, they stressed the need to conduct research on matters which they could connect with such as the impact of clean air plans on young children and how information about air pollution is disseminated in their neighbourhoods as and when research findings emerge. This paper offers a conceptual analysis of the art-based PPI method and uniquely draws a connection to the philosophical traditions of Ludwig Wittgenstein. Specifically, we demonstrate how art is conducive to creating a dialogue which is specifically helpful for PPI purposes for both researchers and implementers, and conversely, why traditional conversational approaches may have fallen short of the adequacy mark in this regard
Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities
Vertical stacking of atomically thin layered materials opens new possibilities for the fabrication of heterostructures with favorable optoelectronic properties. The combination of graphene, hexagonal boron nitride and semiconducting transition metal dichalcogenides allows fabrication of electroluminescence (EL) devices, compatible with a wide range of substrates. Here, we demonstrate a full integration of an electroluminescent van der Waals heterostructure in a monolithic optical microcavity made of two high reflectivity dielectric distributed Bragg reflectors (DBRs). Owing to the presence of graphene and hexagonal boron nitride protecting the WSe2 during the top mirror deposition, we fully preserve the optoelectronic behaviour of the device. Two bright cavity modes appear in the EL spectrum featuring Q-factors of 250 and 580 respectively: the first is attributed directly to the monolayer area, while the second is ascribed to the portion of emission guided outside the WSe2 island. By embedding the EL device inside the microcavity structure, a significant modification of the directionality of the emitted light is achieved, with the peak intensity increasing by nearly two orders of magnitude at the angle of the maximum emission compared with the same EL device without the top DBR. Furthermore, the coupling of the WSe2 EL to the cavity mode with a dispersion allows a tuning of the peak emission wavelength exceeding 35 nm (80 meV) by varying the angle at which the EL is observed from the microcavity. This work provides a route for the development of compact vertical-cavity surface-emitting devices based on van der Waals heterostructures
"Author! Author!" : Shakespeare and biography
Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor & Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the “works”, and may or may not refer to an author whose “life” contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of “life” that puts itself into “works”, and this is particularly challenging where the “works” predominate massively over the salient facts of the “life”. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's “personality” from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe
Photoluminescence of two-dimensional GaTe and GaSe films
Gallium chalcogenides are promising building blocks for novel van der Waals heterostructures. We report on the low-temperature micro-photoluminescence (PL) of GaTe and GaSe films with thicknesses ranging from 200 nm to a single unit cell. In both materials, PL shows a dramatic decrease by 10e4–10e5 when film thickness is reduced from 200 to 10 nm. Based on evidence from continuous-wave (cw) and time-resolved PL, we propose a model explaining the PL decrease as a result of non-radiative carrier escape via surface states. Our results emphasize the need for special passivation of two-dimensional films for optoelectronic applications
An experimental investigation of the effect of age and sex/gender on pain sensitivity in healthy human participants
© 2018 El-Tumi et al. Background: Ageing is associated with alterations of the structure and function of somatosensory tissue that can impact on pain perception. The aim of this study was to investigate the relationship between age and pain sensitivity responses to noxious thermal and mechanical stimuli in healthy adults. Methods: 56 unpaid volunteers (28 women) aged between 20 and 55 years were categorised according to age into one of seven possible groups. The following measurements were taken: thermal detection thresholds, heat pain threshold and tolerance using a TSA-II NeuroSensory Analyzer; pressure pain threshold using a handheld electronic pressure algometer; and cold pressor pain threshold, tolerance, intensity and unpleasantness. Results: There was a positive correlation between heat pain tolerance and age (r = 0.228, P = 0.046), but no statistically significant differences between age groups for cold or warm detection thresholds, or heat pain threshold or tolerance. Forward regression found increasing age to be a predictor of increased pressure pain threshold (B = 0.378, P = 0.002), and sex/gender to be a predictor of cold pressor pain tolerance, with women having lower tolerance than men (B =-0.332, P = 0.006). Conclusion: The findings of this experimental study provide further evidence that pressure pain threshold increases with age and that women have lower thresholds and tolerances to innocuous and noxious thermal stimuli. Significance: The findings demonstrate that variations in pain sensitivity response to experimental stimuli in adults vary according to stimulus modality, age and sex and gender
Geological history of the Winchcombe meteorite - A new cm Chrondrite fall
Introduction: The Mighei-like (CM) carbonaceous chondrites are the largest class of hydrated meteorites, representing collisionally derived fragments of water-rich asteroids [1,2]. Most (>95%) are breccias, whose clasts sample a range of aqueous alteration extents [3]. They can therefore act as “snapshots” recording the progression of fluidrock interaction on the CM parent body. Conversely, analysis of the material between clasts (termed cataclastic matrix) provides an opportunity to study the post-hydration history of the CM parent body, specifically its fragmentation and re-accretion. Here, we investigate both aspects of the CM chondrites’ geological history through study of the newly recovered fall: Winchcombe [4, 5].
Methods: Sixteen polished sections with a total area of 190 mm2 were generated for this work. They were studied under scanning electron microscopy (SEM) using backscattered electron (BSE) imaging, energy dispersive X-ray spectroscopy (EDX) and electron microprobe analysis (EMPA). These sections sample the two largest masses (the main mass [320 g] and the agricultural field stone [152 g]) recovered from the Winchcombe strewn field [4].
Results: Winchcombe is a breccia, composed of lithological clasts held within a cataclastic matrix. We identified
eight distinct lithologies. Their aqueous alteration extents vary between intensely altered CM2.0 and moderately altered CM2.6 [6]. Although no lithology dominates, three rock types represent >70% of the studied area. Several lithologies contain abundant tochilinite-cronstedtite intergrowths (TCIs). Type-II forms with zoned textures are most common, typically they have Fe-rich rims (“FeO”/SiO2 wt.%: 1-5) and Mg-rich cores (“FeO”/SiO2 wt.%: < 1), however, forms with hollow cores or cores containing a mix of phyllosilicate and calcite or phyllosilciates and anhydrous silicate are also found. The cataclastic matrix represents ~15% of the studied area. It has a coarse, heterogenous texture and includes abundant subangular fragments. Fragments include the full range of CM chondrite components (e.g. Fe-sulphides, whole chondrules with or without fine-grained rims, olivine and pyroxene grains, serpentine, carbonate grains, TCI clusters, as well as coherent blocks of fine-grained matrix). The cataclastic matrix
is, therefore, a complex mix of components, with both heavily altered and mildly altered phases found in close association. Another striking feature is the apparent low abundance (< 3 area%) of identifiable whole chondrules.
Discussion and conclusions: Our data suggest that both anhydrous silicates and carbonates (T1a calcites) act as precursor phases for type-II TCI formation. Cross-cutting relationships allow the sequence of mineralization to be reconstructed. Initially, inward dissolution by Fe-rich and S-rich fluids forms rims composed of intermixed tochilinite and cronstedtite. In the intermediate stages of type-II TCI formation, further dissolution continues without
concurrent precipitation, resulting in the formation of hollow structures. These voids were later infilled, most often by Mg-rich phyllosilicates. As alteration advanced, early-formed secondary phases became unstable and were either dissolved (e.g. T1a calcites) or chemically altered (e.g. TCI rims).
The presence of numerous lithological clasts with variable aqueous alteration extents and abrupt boundaries found in close juxtaposition indicates that the cataclastic matrix formed by the deposition of fines, alongside larger fragments (the clasts), on or near the surface of the parent asteroid. Furthermore, the composition of the cataclastic matrix is consistent with formation by fragmentation and mixing of debris derived from the entire clast population. The cataclastic matrix is, therefore, interpreted as an impact-derived fallback breccia. Analysis of grain size and texture suggests that disruption of the original parent asteroid responded by intergranular fracture at grain sizes <100 μm, while larger phases, such as whole chondrules, splintered apart. Re-accretion formed a poorly lithified rubble-pile body. During atmospheric entry, the meteoroid broke apart with new fractures preferentially cutting through the weaker cataclastic matrix and thereby separating the Winchcombe meteoroid into its component- lithological clasts. Thus, the strength of the cataclastic matrix imparts a significant control on the survival of CM chondrite meteoroids.
References: [1] McSween, 1979. GCA, 43:1761-1770. [2] Suttle et al. 2021. GCA, 299:219-256. [3] Bischoff, et al. 2017, 80th MetSoc. (Abstr.#6089), [4] Meteoritical Bulletin Database, Winchcombe entry (available at: https://www.lpi.usra.edu/meteor/metbull.php?code=74388). [5] Daly et al., (this meeting). [6] Rubin et al. 2007,GCA, 71:2361-2382
Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
- …