1,103 research outputs found
CII, CI, and CO in the massive star forming region W3 Main
We have used the KOSMA 3m telescope to map the core 7'x5' of the Galactic
massive star forming region W3Main in the two fine structure lines of atomic
carbon and four mid-J transitions of CO and 13CO. In combination with a map of
singly ionized carbon (Howe et al. 1991), and FIR fine structure line data
observed by ISO/LWS at the center position, these data sets allow to study in
detail the physical structure of the photon dominated cloud interface regions
(PDRs) where the occurance of carbon changes from CII to CI, and to CO.Comment: 4 pages, 4 figures, to appear in "Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium, The dense interstellar medium in galaxies",
eds. S. Pfalzner, C. Kramer, C. Straubmeier, and A. Heithausen (Springer
Verlag
The Carbon content in the Galactic CygnusX/DR21 star forming region
Observations of Carbon bearing species are among the most important
diagnostic probes of ongoing star formation. CO is a surrogate for H and is
found in the vicinity of star formation sites. There, [CI] emission is thought
to outline the dense molecular cores and extend into the lower density regions,
where the impinging interstellar UV radiation field plays a critical role for
the dissociation and ionization processes. Emission of ionized carbon ([CII])
is found to be even more extended than [CI] and is linking up with the ionized
medium. These different tracers emphasize the importance of multi-wavelength
studies to draw a coherent picture of the processes driving and driven by high
mass star formation. Until now, large scale surveys were only done with low
resolution, such as the COBE full sky survey, or were biased to a few selected
bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader
basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play
a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier,
and A. Heithausen (Springer Verlag
Huge quadratic magneto-optical Kerr effect and magnetization reversal in the CoFeSi Heusler compound
CoFeSi(100) films with L2 structure deposited onto MgO(100) were
studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE)
magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a
maximum contribution of up to 30 mdeg, which is the largest QMOKE signal in
reflection that has been measured thus far. This large value is a fingerprint
of an exceptionally large spin-orbit coupling of second or higher order. The
CoFeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for
film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films
are epitaxial, they do not provide an angular dependence of the anisotropy and
the remanence in excess of 1% and 2%, respectively
Epitaxial film growth and magnetic properties of Co_2FeSi
We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron
sputtering. On (100)-oriented MgO substrates we find fully epitaxial
(100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film
growth is (110)-oriented, and several in-plane epitaxial domains are observed.
The temperature dependence of the electrical resistivity shows a power law with
an exponent of 7/2 at low temperatures. Investigation of the bulk magnetic
properties reveals an extrapolated saturation magnetization of 5.0 mu_B/fu at 0
K. The films on Al_2O_3 show an in-plane uniaxial anisotropy, while the
epitaxial films are magnetically isotropic in the plane. Measurements of the
X-ray magnetic circular dichroism of the films allowed us to determine element
specific magnetic moments. Finally we have measured the spin polarization at
the surface region by spin-resolved near-threshold photoemission and found it
strongly reduced in contrast to the expected bulk value of 100%. Possible
reasons for the reduced magnetization are discussed.Comment: 9 pages, 12 figure
Ion beam induced modification of exchange interaction and spin-orbit coupling in the CoFeSi Heusler compound
A CoFeSi (CFS) film with L2 structure was irradiated with different
fluences of 30 keV Ga ions. Structural modifications were subsequently
studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical
Kerr effect. Both the coercivity and the LMOKE amplitude were found to show a
similar behavior upon irradiation: they are nearly constant up to ion fluences
of ion/cm, while they decrease with further
increasing fluences and finally vanish at a fluence of
ion/cm, when the sample becomes paramagnetic. However, contrary to this
behavior, the QMOKE signal nearly vanishes even for the smallest applied
fluence of ion/cm. We attribute this reduction of the
QMOKE signal to an irradiation-induced degeneration of second or higher order
spin-orbit coupling, which already happens at small fluences of 30 keV Ga
ions. On the other hand, the reduction of coercivity and LMOKE signal with high
ion fluences is probably caused by a reduction of the exchange interaction
within the film material
The cooling of atomic and molecular gas in DR21
We present an overview of a high-mass star formation region through the major
(sub-)mm, and far-infrared cooling lines to gain insight into the physical
conditions and the energy budget of the molecular cloud. We used the KOSMA 3m
telescope to map the core () of the Galactic star forming region
DR 21/DR 21 (OH) in the Cygnus X region in the two fine structure lines of
atomic carbon CI and four mid- transitions of CO and CO, and CS
J=7\TO6. These observations have been combined with FCRAO J=1\TO0
observations of CO and CO. Five positions, including DR21, DR21
(OH), and DR21 FIR1, were observed with the ISO/LWS grating spectrometer in the
\OI 63 and 145 m lines, the \CII 158 m line, and four high- CO
lines. We discuss the intensities and line ratios at these positions and apply
Local Thermal Equilibrium (LTE) and non-LTE analysis methods in order to derive
physical parameters such as masses, densities and temperatures. The CO line
emission has been modeled up to J=20. From non-LTE modeling of the low- to
high- CO lines we identify two gas components, a cold one at temperatures of
T_\RM{kin}\sim 30-40 K, and one with T_\RM{kin}\sim 80-150 K at a local
clump density of about n(H) cm. While the cold
quiescent component is massive containing typically more than 94 % of the mass,
the warm, dense, and turbulent gas is dominated by mid- and high- CO line
emission and its large line widths. The medium must be clumpy with a
volume-filling of a few percent. The CO lines are found to be important for the
cooling of the cold molecular gas, e.g. at DR21 (OH). Near the outflow of the
UV-heated source DR21, the gas cooling is dominated by line emission of atomic
oxygen and of CO
Emission of CO, CI, and CII in W3Main
We used the KOSMA 3m telescope to map the core 7'x5' of the Galactic massive
star forming region W3Main in the two fine structure lines of atomic carbon and
four mid-J transitions of CO and 13CO. The maps are centered on the luminous
infrared source IRS5 for which we obtained ISO/LWS data comprising four high-J
CO transitions, CII, and OI at 63 and 145 micron. In combination with a KAO map
of integrated line intensities of CII (Howe et al. 1991), this data set allows
to study the physical structure of the molecular cloud interface regions where
the occurence of carbon is believed to change from C+ to C0, and to CO. The
molecular gas in W3Main is warmed by the far ultraviolet (FUV) field created by
more than a dozen OB stars. Detailed modelling shows that most of the observed
line intensity ratios and absolute intensities are consistent with a clumpy
photon dominated region (PDR) of a few hundred unresolved clumps per 0.84pc
beam, filling between 3 and 9% of the volume, with a typical clump radius of
0.025pc (2.2"), and typical mass of 0.44Msun. The high-excitation lines of CO
stem from a 100-200K layer, as also the CI lines. The bulk of the gas mass is
however at lower temperatures.Comment: (19 pages, 10 figures, accepted by A&A
- …