Observations of Carbon bearing species are among the most important
diagnostic probes of ongoing star formation. CO is a surrogate for H2 and is
found in the vicinity of star formation sites. There, [CI] emission is thought
to outline the dense molecular cores and extend into the lower density regions,
where the impinging interstellar UV radiation field plays a critical role for
the dissociation and ionization processes. Emission of ionized carbon ([CII])
is found to be even more extended than [CI] and is linking up with the ionized
medium. These different tracers emphasize the importance of multi-wavelength
studies to draw a coherent picture of the processes driving and driven by high
mass star formation. Until now, large scale surveys were only done with low
resolution, such as the COBE full sky survey, or were biased to a few selected
bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader
basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play
a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier,
and A. Heithausen (Springer Verlag