217 research outputs found

    Place cells on a maze encode routes rather than destinations

    Get PDF
    Hippocampal place cells fire at different rates when a rodent runs through a given location on its way to different destinations. However, it is unclear whether such firing represents the animal's intended destination or the execution of a specific trajectory. To distinguish between these possibilities, Lister Hooded rats (n=8) were trained to navigate from a start box to three goal locations via four partially overlapping routes. Two of these led to the same goal location. Of the cells that fired on these two routes, 95.8% showed route-dependent firing (firing on only one route), whereas only two cells (4.2%) showed goal-dependent firing (firing similarly on both routes). In addition, route-dependent place cells over-represented the less discriminable routes, and place cells in general over-represented the start location. These results indicate that place cell firing on overlapping routes reflects the animal's route, not its goals, and that this firing may aid spatial discrimination

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Human place and response learning: navigation strategy selection, pupil size and gaze behavior.

    Get PDF
    In this study, we examined the cognitive processes and ocular behavior associated with on-going navigation strategy choice using a route learning paradigm that distinguishes between three different wayfinding strategies: an allocentric place strategy, and the egocentric associative cue and beacon response strategies. Participants approached intersections of a known route from a variety of directions, and were asked to indicate the direction in which the original route continued. Their responses in a subset of these test trials allowed the assessment of strategy choice over the course of six experimental blocks. The behavioral data revealed an initial maladaptive bias for a beacon response strategy, with shifts in favor of the optimal configuration place strategy occurring over the course of the experiment. Response time analysis suggests that the configuration strategy relied on spatial transformations applied to a viewpoint-dependent spatial representation, rather than direct access to an allocentric representation. Furthermore, pupillary measures reflected the employment of place and response strategies throughout the experiment, with increasing use of the more cognitively demanding configuration strategy associated with increases in pupil dilation. During test trials in which known intersections were approached from different directions, visual attention was directed to the landmark encoded during learning as well as the intended movement direction. Interestingly, the encoded landmark did not differ between the three navigation strategies, which is discussed in the context of initial strategy choice and the parallel acquisition of place and response knowledge

    Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS) tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder.</p> <p>Results</p> <p>The activity of small neuronal ensembles (6-18 cells) over brief time intervals (2-50 ms) contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison). The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals.</p> <p>Conclusion</p> <p>The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.</p

    Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex

    Get PDF
    Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input–output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input–output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions

    Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    Get PDF
    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance

    Vicarious trial-and-error is associated with the use of place-strategies in human virtual navigation

    No full text
    Studies of decision-making in rodents have demonstrated that vicarious trial-and-error (VTE) is an important behavioral index of deliberation, when animals search through and evaluate the available options before making a decision. In rodents, VTE is enhanced during the use of hippocampally-dependent place strategies, which may represent a type of model-based behavior. While some evidence exists for VTE-like behaviors in humans during navigation, it is unknown if VTE in humans is specifically associated place-strategies, as would be predicted for model-based behaviors. To address this gap, humans were tested in navigation tasks in symmetrical environments, which allowed for the use of probe trials to assess navigation strategies (place or response) or impose them directly. The use of place strategies (on probe trials and place-training) was associated with increases in measures of VTE (reorientations and pausing) especially at high-cost decision points, similar to results from rodent studies. In contrast, response-strategies were associated with the development of efficient, stereotyped trajectories (consistent with model-free learning). These results support the identification of place- and response-strategies in human navigation with model-based and model-free learning, respectively, and demonstrate that VTE is specifically related to the use of place-strategies
    corecore