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Abstract 

Hippocampal place cells fire at different rates when a rodent runs through a given 

location on its way to different destinations.  However, it is unclear whether such firing 

represents the animal’s intended destination or the execution of a specific trajectory.  To 

distinguish between these possibilities, Lister Hooded rats (n=8) were trained to navigate from 

a start box to three goal locations via four partially overlapping routes. Two of these led to the 

same goal location.  Of the cells that fired on these two routes, 95.8% showed route-dependent 

firing (firing on only one route), whereas only two cells (4.2%) showed goal-dependent firing 

(firing similarly on both routes).  In addition, route-dependent place cells over-represented the 

less discriminable routes, and place cells in general over-represented the start location. These 

results indicate that place cell firing on overlapping routes reflects the animal’s route, not its 

goals, and that this firing may aid spatial discrimination.   

 

Keywords: hippocampus, place cell, spatial memory, trajectory encoding 
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Introduction  

A long-standing view of the hippocampus is that it contains a neural representation of 

space, a ‘cognitive map’ (Tolman, 1948), that encodes locations via the spatial receptive fields 

of place cells (O’Keefe and Nadel, 1978; O’Keefe, 1999). However, when a rat repeatedly 

traverses the same location on its way to different destinations, the place fields of hippocampal 

place cells are strongly modulated by where the animal is going or where it has come from 

(Wood et al., 2000; Frank et al., 2000; Ferbinteanu & Shapiro, 2003; Bower et al., 2005; Ainge et 

al, 2007; Ji & Wilson, 2008; Pastalkova et al., 2008; Ferbinteanu et al., 2011;  Allen et al., 2012; 

Catanese et al., 2014; Ito et al., 2015).  This suggests that place cells represent not just near 

instantaneous location (Muller & Kubie, 1989), but also aspects of the animal’s goal directed 

behaviour. 

 In tasks where consistent differences in place cell firing are observed, rats are usually 

well-trained and execute rapid trajectories to goal locations.  For example, in a study by Ainge 

et al. (2007), rats ran up the central stem of a double-Y maze to gather reward in one of four 

goal boxes.  Place fields on the central stem and on adjacent portions of the maze often 

exhibited strong modulation depending on the goal box the animal was headed towards (see 

Figure 3 in Ainge et al., 2007).  One interpretation of this ‘splitter cell’ pattern of firing 

(hereafter differential firing) is that it represents the animal’s intended destination. 

 However, another interpretation is possible.  To reach each goal location, the rat 

traversed a partially overlapping, but distinct route.  Each route was repeated multiple times 

until the reward was moved to a different goal box.  It is possible that the prospective 

differential firing observed in the overlapping portions of the routes did not reflect the 

intended goal location per se, but rather the position along one of four separate trajectories.  In 



4 
 

this view, differential firing reflects routes, as opposed to goals.  This distinction between 

executing a series of responses and learning a goal location has a long tradition in spatial 

learning (Tolman et al., 1946; Blodgett and McCutchan, 1947; Restle, 1957). 

 To distinguish between goal and route accounts of differential firing, we designed a new 

apparatus in which different overlapping routes led to the same goal (Figure 1A and B).  If 

differential firing on the overlapping sections of different trajectories reflects the animal’s 

intended destination, then firing on the overlapping sections of the two routes leading to the 

same goal should be similar (but should differ from firing on the routes leading to other goals). 

In contrast, if differential firing reflects position along a specific route, the firing on these two 

routes should differ (Figure 1D).  Our results support the latter interpretation.  Place cells with 

fields on the overlapping portions of different routes leading to a common goal showed strong 

differential firing, and failed to show similar firing on different routes leading to the same goal. 
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Results 

Rats (n=8) were trained on a task in which they travelled from a start box to one of 

three goals boxes (Left, Centre, Right) to obtain a food reinforcement (Figure 1A, B). Each path 

from the start box to a goal location was assigned a route number: Route 1 was the left-most 

path to Left Goal Box; Route 2 was the centre-left path to Centre Goal Box; Route 3 was the 

centre-right path to Centre Goal Box; and Route 4 was the right-most path to Right Goal Box 

(Figure 1B). Daily, uninterrupted sessions were comprised of four blocks of at least 11 trials.  

Within each block of trials, the reward remained in the same goal box, and then was switched 

to another goal box for the next block of trials.  Thus, each of the four routes was associated 

with reward, according to a counterbalanced schedule across days (see Figure 1E). During a 

daily session the trial duration, the number of error trials before discovering which goal box was 

rewarded at the beginning of each block, the number of error trials after discovering the 

rewarded goal box during each block, and the trajectory chosen on each trial were recorded.  

 

Rats learned the win-stay task 

Over the course of the first 10 sessions prior to surgery, the number of errors the 

animals made after the first correct trial in each block of trials decreased significantly over 

sessions (F(9,99) = 5.26, p < .001,  = 0.32; Figure 2A solid line). The time the rats took to 

complete each trial once they had located the rewarded goal in a block of trials also decreased 

significantly across sessions (F(9,99) = 6.87, p < .001,  = 0.38; Figure 2B solid line).  In contrast, 

neither the number of errors per session (F(9,99) = 1.80, p > .05), nor the time per trial (F(9,99) 

= 1.95, p > .05) on trials prior to finding the rewarded goal box in each block changed 

significantly over sessions (Figure 2A and 2B respectively, dashed lines). Together, these results 
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suggest that the rats could remember the last rewarded goal and learned to apply the win-stay, 

lose-shift rule, but that their efficiency in searching for the new goal location at the beginning of 

each block did not improve significantly across sessions.      

Consistent with this, the rats navigated from the start box to a goal box significantly 

faster once they were aware of the reward location within each block of trials (F(1,11) = 25.83, 

p < .001,  = 0.70). Across all sessions, the rats averaged 9.08 s (S.D. = 6.19 s) to travel from 

the start box to the end of the maze on trials before they had identified the goal box which 

contained reward.  Once the rewarded goal box had been visited, travel time on later trials in 

that block decreased to 5.38 s (S.D. = 3.48 s). 

 

Routes to the same goal were more difficult to distinguish than routes to different goals  

During training the animals made a greater number of errors on the trials when Routes 

2 or 3 to the Centre Goal Box were rewarded than on trials when the outer routes (Routes 1 or 

4) to the Left and Right Goal Boxes, respectively, were rewarded (t(9) = 4.53, p < .005, paired t-

test, see Figure 2C). This difference decreased across the training period (inner/outer goal x 

session interaction: F(9,99) = 2.99, p < .005,  = 0.21; Figure 2D).  

We sought to define the nature of the errors which rats made after finding the location 

of the food reward in each block. An error where the rat took Route 1 to the Left Goal Box 

when Route 2 to the Centre Goal Box was rewarded can be interpreted as a similar form of 

navigation error as taking Route 2 to the Centre Goal Box when Route 1 to the Left Goal Box 

was rewarded. Both results may reflect an inability to discriminate between those two reward 

locations or routes. Figure 2E shows the distribution of post-reward errors when grouped into 

the six possible pairs of these confusion errors. From this figure it is clear that the rats made 

more errors between the two routes to the same goal (Routes 2 and 3 to the Centre Goal) as 
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opposed to any other route pairs (F(5,55) = 11.75, p < .001,  = 0.52).  Post-hoc multiple 

comparison tests confirmed Routes 2 and 3 were confused more than any other route pair (p < 

.05 in all cases, with Sidak correction). 

 

Single Unit Activity 

Place cells over-represent the start area of the maze 

 To test whether place cell activity encodes routes or goals, the trained rats were 

implanted with tetrodes targeting the CA1 cell layer of the hippocampus.  In total, we recorded 

377 place cells that were active on the maze from eight rats. We first analysed the distribution 

of place cell activity within the maze. The maze was divided into 14 sectors and place cells were 

categorised as being active in a given sector (defined as mean firing rate >1Hz in that sector 

when the rat traversed one of the four trajectories) or not. Place cells were more likely to have 

a place field in the initial areas of the maze (e.g., the start box, central stem and first choice 

point) than in later ones (Figure 3A; see also Ainge et al., 2007). Consistent with this, there was 

a significant negative correlation between distance of the sector from the start box and the 

number of recorded place cells that were active in that sector (r(12) = -0.78, p < .05; Figure 3B). 

Neither running speed, nor cell firing rate showed such a direct relationship with distance from 

the start box (Figure 3C). 

 

Differential place cell activity throughout the maze 

As place field firing may be variable during different runs through a given location 

(Fenton & Muller, 1998), we assessed differential place cell activity using a non-parametric 

ranked analysis of covariance (rANCOVA, Quade, 1967).  Additionally, both a permutation F-test 
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and Generalized Linear Model provided similar results (see tables 1-4 in Supplementary file 1).  

Although the results of the rANCOVA are reported here, we note that other analyses may yield 

greater numbers of differential cells (Prerau et al., 2014). In the maze environment, 284 place 

cells were assessed by rANCOVA in at least one of the four sectors that were analysed for 

route/goal-dependent activity (Figure 1C; start box, central stem, left stem and right stem). Of 

these, 161 cells (57%) showed differential firing in at least one sector based on the rANCOVA 

results. Examining each of the four sectors of the maze separately, 83/176 assessed cells (47%) 

showed significantly different firing rates in the start box between the four trajectories (termed 

differential firing; see Movie 1). 61/158 (43%) cells showed differential firing in the central 

stem, and 16/124 (13%) and 14/115 (12%) showed differential firing in the left and right stems 

respectively (Figure 3E). Examples of these cells can be seen in Figure 3D, Figure 4 and Figure 4  

- figure supplements 1-2. In the start box, differential firing did not reflect anticipatory firing 

before the holding block was removed, as cells with differential firing did not differ from other 

active place cells (Figure 3F; (F(1,257) = 0.25, p > .80, < .10, tested by repeated measures 

ANOVA looking at firing rate x time bin (four equally spaced intervals) x cell type). 

 

Place cells encode routes, and not goals 

The critical test of the route vs. goal account of differential activity is the comparison of 

firing rates on overlapping portions of the two routes (Routes 2 and 3) to the Centre Goal Box 

(Figure 1D).  Therefore, we focussed only on the cells with differential activity, as identified by a 

rANCOVA analysis of firing rates in the start box or central stem. From post-hoc multiple 

comparison analyses between the four routes, we identified those cells that had significantly 

different firing on one of the four routes than on each of the other three (e.g. higher firing in 

the central stem on Route 1 than on Routes 2, 3 and 4), and also those cells which fired at a 
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significantly different (higher or lower) rate on Routes 2 and 3 than on Routes 1 and 4, and 

whose firing rates did not differ between Routes 2 and 3.  Examples of cells which exhibited 

differential firing are shown in Figure 3D, Figure 4 and Figure 4 – figure supplement 1.  Overall, 

48 cells were identified with one of these patterns of activity, and of these, 9 cells fired at a 

significantly different rate on Route 1 than on the other 3 routes, 13 cells fired at a significantly 

different rate on Route 2, 18 cells fired at a significantly different rate on Route 3, and 6 cells 

fired at a significantly different rate on Route 4. Only two cells fired similarly and at a 

significantly higher rate for Routes 2 and 3 than for Routes 1 and 4. The probability of observing 

this pattern by chance is low (X2(4, N = 48) = 15.96, p < .004, Fischer’s exact test, Figure 5A).  

This pattern of firing reveals two interesting results. First, for the majority (95.8%) of 

place cells which fired significantly differently on at least one of the routes to the Centre Goal 

Box, firing appeared to be related to the specific intended route. In only two (4.2%) of the cells 

did the firing rate appear to be related to the intended goal, independent of the route. This 

pattern of results is significantly different than expected if equal numbers of cells had coded 

Route 2, Route 3 and both routes (X2(1, N = 33) = 25.49, p < .0001, Fischer’s exact test).  Second, 

of the cells included in this analysis, 69% (33/48) fired preferentially on one (or both) routes to 

the Centre Goal Box (Routes 2 or 3), whereas only 31% (15/48) fired preferentially on one of 

the routes to the outer goals (Routes 1 or 4). The probability of observing this pattern of results 

by chance is also low (X2(1, N = 48) = 6.75, p < .015, Fischer’s exact test), and indicates 

significantly more route coding for the two routes to the Centre Goal Box than to the two 

routes to the outer goal boxes.  In the segments of the maze just after the first choice point, 30 

cells (16 or 12.9% in the left stem, 14 or 12.2% in the right stem) were found to fire significantly 

differently depending on the trajectory of the animal. Over-representation of Routes 2 and 3 
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also appeared to be present here, however this effect is not statistically significant (X2(1, N = 

30) = 0.53, p > .5, Fischer’s exact test; Figure 5B).  

 
Cell isolation and differential firing 
 

Place cells with significant differential activity on the maze did not differ from place cells 

without such activity in terms of isolation distances (D = 0.10, p > .90), distribution of Lratios (D = 

0.25, p > .40), signal-to-noise ratios (D = 0.2, p > .70), or peak waveform amplitude (D = 0.2, p > 

.70) (Figure 6B). All tests were pairwise, Kolmogorov-Smirnov tests. Nor did we detect any 

relationship between these four measures and rANCOVA F-statistic (r(573) = 0.05, p > .20, 

r(573) = -0.08, p > .05, r(573) = 0.03, p > .40 and r(573) = 0.01, p > .05). All tests were 

Spearman’s pairwise correlations, conducted after removing statistical outliers using an 

iterative implementation of the Grubbs Test (Grubbs, 1969) (see Figure 6C). 

 
 

Ensemble activity suggests route-dependent firing, not goal location-dependent firing 

To test the accuracy with which an animal’s trajectory could be identified based on the 

average firing rate of place cell ensembles we analysed 25 ensembles from six rats with an 

average of 11.12 cells/ensemble (SD = 5.67).  Ensembles had to contain at least six place cells, 

and the largest ensemble contained 27 cells.   

At the ensemble level, population vectors representing trajectories along Routes 1-4 in 

the start box and central stem were consistently matched to their correct goal population 

vector at a rate greater than incorrect goal population vectors (Figure 7A - start box, and 7E - 

central stem). These matches were made at an above chance level, regardless of the final goal 

destination (p < 10-3 in all cases, Figure 7D and 7F respectively). Furthermore, population 

vectors representing trajectories on the central two routes leading to the same goal were not 
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matched to the alternative central route at an above chance level (p > 0.9 in all cases). These 

results confirm that at the ensemble level, as with the single cell level, place cell firing patterns 

were not dependent on the final goal destination but on the immediate trajectory. 

Furthermore, this information alone was sufficient to decode the animal’s future destination at 

an above chance level. Also, there was no relationship between the position of a trial within a 

block and the likelihood of this trajectory being correctly matched to its goal population vector 

or the cosine similarity value resulting from this comparison (p > .05 in both cases) (Figure 7 – 

figure supplement 1) suggesting that this trajectory coding persisted throughout blocks of trials. 

 

Place cells represent the Centre Goal Box similarly, regardless of the route taken there 

It is possible that without having free, contiguous exploration of the maze rats 

considered the Centre Goal Box to be two distinct locations depending on the route taken. To 

test this possibility we analysed place cell firing rates in the Centre Goal Box and compared this 

firing between trials when rats navigated to the box using Routes 2 or 3 (Figure 8A). We found 

that firing in the Centre Goal Box when the rat took Routes 2 and 3 was correlated more highly 

(r(375) = 0.5, p < .001) than firing between any other pair of goal boxes (r < 0.4 in all cases), 

such as the Left and Right Goal Box (Figure 8B left). We performed a shuffled analysis to 

determine if this correlation was greater than might be expected by chance. This analysis 

revealed that this correlation is in fact higher than would be expected by chance (p < .003, 

Figure 8B right) and that this was not the case for any other box pairs (p > .09 in all cases). 

These results confirm that place cell activity in the Centre Goal Box was similar regardless of the 

route taken to get there, that this firing was more similar than in any other pair of goal boxes 

and that this firing was the only firing more similar than could be expected by chance. 
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Histology 

Electrode tracks confirmed placement of the electrodes in the CA1 region of the HPC 

(Figure 9). The final electrode placement for one of the eight animals was less obvious due to 

tissue damage near the implant site. For this animal, part of the electrode track was seen in the 

cortex above the HPC and appeared to have descended at the correct ML and AP coordinates, 

and complex spikes and theta oscillations were observed.   The neurons recorded from this 

animal which passed our criteria for place cells in the maze apparatus did not differ from the 

other animals in terms of isolation distance, l-ratio, average firing rate, maximum firing rate 

(found in the firing rate map), width of waveform or spatial information content (p > .05 in all 

cases, Exact Kolmogorov-Smirnov tests). Thus, this rat’s data were included in the analyses 

above. 
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Discussion 

 The current experiment tested whether the strong modulation of place cell firing that 

occurs when an animal travels to different destinations reflects the animal’s route or the 

animal’s intended destination.  Our results, both at a single-unit and an ensemble level, suggest 

that such conditional firing encodes a learned route.  We consider these findings below. 

 

Differential place cell firing 

Previous studies have shown that when a well-trained rat runs through the common 

segment of a maze on its way to or from different destinations, clear modulation of 

hippocampal place cell firing rates is observed (e.g., Wood et al., 2000; Frank et al., 2000; 

Ferbinteanu & Shapiro, 2003; Bower et al., 2005; Ji & Wilson, 2008; Pastalkova et al., 2008; 

Ferbinteanu et al., 2011; Catanese et al., 2014; Ito et al., 2015).  In many cases, however, it is 

unclear what this differential firing represents.  In a continuous maze, differential firing appears 

to represent previous locations early in the common stem of the maze, and intended 

destinations later in the common stem (Catanese et al., 2014).  In discrete trial tasks, where the 

animal is picked up and returned to a start box on each trial, the finding that place cells are 

active on journeys to one goal box and not active for journeys to other goal boxes has been 

interpreted as an encoding of the animal’s intended destination (Ainge et al., 2007; 2012).   

However, an alternative explanation is also plausible.  In the Ainge et al. (2007) 

experiment, as in other studies, animals were well-trained.  The rats ran rapidly to the 

rewarded goal box with little hesitation along the route.  Thus the modulation of place cell 

firing observed in this task might not represent the intended destination per se, but rather a 

read-out of a specific trajectory sequence (as in Pastalkova et al., 2008).  To differentiate 
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between these possibilities, we tested animals on a task where two different routes led to the 

same goal location.  Differential place cell firing on the overlapping portions of these routes 

would suggest that such activity encodes specific routes.  Similar firing on the two routes would 

be consistent with the encoding of a common intended destination. 

Our results demonstrate that differential firing is associated with the animal’s route and 

not with its final destination. Of the cells with differential firing in the start box and central 

stem which fired preferentially on trajectories to the Centre Goal Box, nearly 96% showed 

differential firing between the two potential routes.  Furthermore, at an ensemble level, the 

firing rate of place cells in the start box or central stem was sufficient to decode the animal’s 

route at an above chance level, regardless of which route was taken.  This indicates that the 

ensemble firing of place cells carries sufficient information to distinguish the two central routes 

to the shared goal location and is thus also route-dependent, and not goal-dependent.  

A potential caveat to these findings is that we may have biased the rats’ representation 

towards routes by blocking one of the possible routes to the Centre Goal Box. We attempted to 

address this by training a second, naïve group of rats on the same task but without the 

transparent goal barrier.  However, the majority of these animals formed a strong bias for one 

of the two routes to the Centre Goal Box. Thus, given the choice, the rats appeared to minimize 

the number of trajectories to learn, suggesting that even in the absence of a barrier, rats 

choose to solve the task in terms of routes, not goals. Similar navigation has been suggested in 

baboons, who simplify a complex jungle environment to a limited number of favourite routes 

(Byrne, 2000).  The potential biasing of place cell representations is consistent with previous 

reports of differential place cell firing with respect to deprivation state (i.e., hunger or thirst) 

(Kennedy et al., 2009), spatial strategy (Ferbinteanu et al., 2011), type of reward (Allen et al., 

2012), or order of non-spatial (olfactory) stimuli (Allen et al., 2016).  Though route encoding is 



15 
 

predominant in the current study, it is certainly possible that different task contingencies might 

yield a significant representation of individual goals.   

Recent work by Ito et al. (2015) has suggested that trajectory-dependent cells are found 

in the nucleus reuniens, an input to CA1, and in the medial prefrontal cortex.  They show that 

the nucleus reuniens appears necessary for the differential firing in CA1 place cells.  Together 

with the current results, this finding implies that trajectory encoding may arise in the medial 

prefrontal cortex, and may be passed through the nucleus reuniens to the CA1 layer of the 

hippocampus.  

The current results deal, like those of Ito et al. (2015), only with prospective place cell 

firing.  Findings from Ferbinteanu and Shapiro (2003) indicate that retrospective firing may not 

reflect trajectories.  They trained rats on a plus maze task, and showed that even when the 

animal took indirect trajectories to a goal, differential retrospective firing was observed.  That 

is, retrospective place cell firing depended on which maze arm the rat started from, regardless 

of its subsequent trajectory.  A likely possibility is that the hippocampus represents both where 

the animal is going, and where it has been.  Such an account is consistent with recent 

demonstrations of prospective firing (e.g., Pfeiffer & Foster, 2013), and with earlier lesion 

studies using retrospective homing tasks (Gorny et al., 2002; Wallace & Whishaw, 2003). 

 

Over-representation of trajectory starts 

 A second main finding in the current experiment was that the representation of the 

maze environment by hippocampal place fields was non-uniform.  This occurred in two 

domains: the distribution of place fields on the maze, and the distribution between routes.  

In the current experiment, we observed a linear decrease in the frequency of active 

place cells from the start box to the goal locations. In previous work, place cells appear to over-
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represent goal locations (Markus et al., 1995; Hollup et al., 2001; Holscher, Jacob, Mallot, 2003; 

Kobayashi et al., 2003; Hok et al., 2007; Dupret et al., 2010). However, in previous studies with 

a double-Y or continuous-T maze, over-representation of the start areas of the maze has also 

been observed (Ainge et al., 2007; 2012). One possibility is that in mazes where rats run 

overlapping routes but represent these independently, over-representation is expected for the 

common segments of the maze. A second, intriguing possibility is that the dorsal hippocampus 

represents distance to a goal, and this is more apparent in structured tasks with constrained 

routes.  Recent findings suggest that in humans, the posterior hippocampus - which 

corresponds to the rodent dorsal hippocampus - exhibits more activation the farther one is 

from a navigational goal (Howard et al., 2014).  

The second type of over-representation observed was a larger number of route-

dependent cells coding specifically for the two routes to the Centre Goal Box than for routes to 

the two outer goal boxes. In learning the task, rats made significantly more errors when they 

were navigating these routes and they confused these two routes more than any other route 

pair.  Over-representation may be the result of the recruitment of additional neural resources 

in the face of a difficult discrimination. The hippocampus has been implicated in the 

discrimination of structurally similar spatial environments (Sanderson et al., 2006; Aggleton & 

Pearce, 2001), and it is possible that the similarity of two central routes requires greater 

hippocampal resources to discriminate, yielding an increase in route specific firing.  

 
Summary 
 

The current study makes three contributions. First, we show that the strong modulation 

of place fields when rats run through a common location on their way to different destinations 

reflects the encoding a specific route or trajectory, and not the encoding of an intended goal 
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per se. Second, we show that routes leading to the same goal are more difficult to discriminate 

than routes leading to different goals. Finally, we found that place fields over-represent the 

early portions of the maze, and difficult-to-discriminate routes. These results suggest that 

although the hippocampus represents places, the firing of place cells can also represent well-

learned routes. It is possible that this representation, coupled with increased activity further 

from a goal, allow the animal to determine the distance and the route to a goal. 
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Materials and Methods 

Animals 

For the behavioural portion of the experiment 12 male Lister hooded rats, with an 

average weight of 300g, were used as subjects. Eight of these animals were subsequently used 

in the electrophysiological portion of the experiment at which point they weighed 

approximately 400-450g. A further eight naïve animals, with an average weight of 300g, were 

used to test an alternative training protocol. All animals were housed in groups of four in 

standard cages, but housed individually in custom designed cages after surgery. The animals 

were maintained under a 12 h light/dark cycle and testing was performed during the light phase 

of this cycle. Throughout testing, rats were food restricted such that they maintained 

approximately 90% (and not less than 80%) of their free-feeding weight. This experiment 

complied with the national [Animals (Scientific Procedures) Act, 1986, United Kingdom] and 

international [European Communities Council Directive of November 24, 1986 (86/609/EEC)] 

legislation governing the maintenance of laboratory animals and their use in scientific 

experiments.  Local ethical approval was granted by the University of Edinburgh Animal Welfare 

and Ethical Review Board.  

 
Electrodes and surgery 

Microdrives were based on a modified tripod design described previously (Kubie, 1984).  

The drives were comprised of eight tetrodes, each of which was composed of four HML coated, 

17 µm, 90% platinum 10% iridium wires (California Fine Wire, Grover Beach, CA). Tetrodes were 

threaded through a thin-walled stainless steel cannula (23 Gauge Hypodermic Tube, Small Parts 

Inc, Miramar, FL). The day before surgery and again immediately before surgery the tip of every 

electrode was gold plated (Non-Cyanide Gold Plating Solution, Neuralynx, MT) in order to 
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reduce the impedance of the wire from a resting impedance of 0.7-0.9 MΩ to a plated 

impedance in the range of 200-300 kΩ (250kΩ being the target impedance).  

 Electrodes were implanted using standard stereotaxic procedures under isoflurane 

anaesthesia. Hydration was maintained by subcutaneous administration of 2.5ml 5% glucose 

and 1 ml 0.9% saline. Animals were also given an anti-inflammatory analgesia (small animal 

Carprofen/Rimadyl, Pfizer Ltd., UK) subcutaneously. Electrodes were lowered to just above the 

CA1 cell layer of the hippocampus (-3.5mm AP from bregma, + 2.4mm ML from the midline, -

1.7mm DV from dura surface). The drive assembly was anchored to the skull screws and bone 

surface using dental cement. Animals were given at least two hours recovery in their home 

cage, heated to body temperature. Following this, at least one week of recovery time passed 

before animals were screened for cells. During this week, the animals’ food was tapered from 

free feeding to the pre-surgery level of restriction.   

 

Unit Recording 

Single unit activity was observed and recorded using a 32-channel Axona USB system 

(Axona Ltd., St. Albans, UK). Mill-Max connectors built into the rat’s microdrive were attached 

to the recording system via two unity gain buffer amplifiers and a light, flexible, elasticated 

recording cable. The recording cable passed signals through a ceiling mounted slip-ring 

commutator (Dragonfly Research and Development Inc., Ridgeley, West Virginia) to a pre-

amplifier where they were amplified 1000 times. The signal was then passed to a system unit; 

for single unit recording the signal was band-pass (Butterworth) filtered between 300 and 7000 

Hz. Signals were digitized at 48 kHz and could be further amplified 10-40 times at the 

experimenter’s discretion. The position of the animal was recorded using infra-red LEDs fixed to 

the unity gain amplifiers attached to the rat’s microdrive. A ceiling mounted, infrared sensitive 
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CCTV camera tracked the animal’s position. Rats were screened for single unit activity and for 

the presence of theta oscillations once or twice a day, five days a week. 

 

Apparatus 

 The maze environment was constructed from wood and consisted of seven octagonal 

enclosures (25 x 25cm with 25cm high walls), which formed the start box, the three choice 

points, and the three goal boxes (Figure 1A). Seven wooden alleyways connected these 

enclosures; these were 20cm long x 10cm wide with 10cm high walls. All alleyways and 

octagonal enclosures were painted blue and the maze was elevated 60cm from the floor on 

wooden stools. A moveable wooden barrier (10 cm wide x 25 cm tall) could be placed at the 

exit of the start box to confine the rat to the start box. A moveable transparent Perspex barrier 

(also 10 cm x 25 cm) could be used at one or other entrance to the central goal box to prevent 

the animal entering the goal box via that entrance. The maze was curtained off from the 

remainder of the room on the left with a large white sheet. On the right wall there was a large 

window blackout shutter, and on the wall in front of the maze was an upwardly directed light 

source. To add to the distinctiveness of the goal boxes within the maze, each contained a 

different object: a small grey elephant statue, a small white opaque bottle with cork stopper, 

and a small black and red box with slanted lid. Each goal box also had a Latin alphabet character 

in a different reflective colour affixed to the wall. Heavy ceramic reward dishes were placed in 

each goal box, directly beneath these reflective letters. The start box did not contain any 

objects, but an orange fluorescent star was affixed to the block which kept the animal from 

entering the alleyways.  

The square open field environment (100cm x 100cm with 25cm high walls) was also 

constructed of wood and painted black. When in use (for screening for place cells), this box was 
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placed on top of the maze apparatus, and so was elevated 85cm above the floor, and was 

surrounded by the same set of distal cues.    

 

Win-stay task 

The current task was similar to that employed in previous experiments using a double-Y 

maze (Ainge et al., 2007). A trial started when the experimenter raised the wooden block 

holding the animal in the start box at the base of the maze. The animal then navigated through 

the maze to one of the three goal boxes. On any given trial, only one goal box contained 

reward. Rats were not permitted to return towards the start box during a trial. If the rat 

entered the rewarded goal box, a correct choice was scored, and it was allowed to eat the food 

reward (CocoPops, Kelloggs, Warrington, U.K.) for a minimum of three seconds. The rat was 

then lifted by the experimenter, placed back into the start box and allowed to finish consuming 

any carried food reward. If the rat entered an unrewarded goal box, an incorrect choice was 

scored, and the animal was returned to the start box and held there using the wooden barrier 

for a minimum of three seconds.   

For the Centre Goal Box, one of the two entrances was blocked with a piece of clear 

Perspex positioned in the doorway. Thus, on trials in which the Centre Goal Box was baited, 

only one of the two paths from the start box to this goal box (Routes 2 or Route 3) allowed 

access to the reward. For trials where the Left or Right Goal Boxes were reinforced, the 

transparent barrier was present, but was placed on the entry to the Centre Goal Box furthest 

from the rewarded box (i.e., at the right entry to the Centre Box if the Left Goal Box was 

reinforced). This was to ensure that the choice at the final junction was between two open goal 

boxes. 
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Rats completed trials as described above until they entered the correct goal box. They 

were then given a further 11 trials, and in these trials the same goal box was reinforced. At the 

end of this first block of trials, the food was moved to a new goal box and the process was 

repeated (Figure 1E).  

 

Win-stay with free choice 

We trained an additional eight naïve rats on the same task described above in the 

absence of the Perspex barrier to the middle goal box. In this case, either route to the Centre 

Goal Box allowed access to the reward. As before, reward was available in one goal box for a 

block of trials, and the Centre Goal Box was reinforced for two blocks. We hoped that the rats 

would sample both routes at a roughly equal frequency without needing to direct their 

behaviour within blocks of trials to the Centre Goal Box. These rats were trained for a total of 

12 sessions. Unfortunately, all of the rats rapidly developed a preference for only one route to 

Centre Goal Box (mean 71% of trials via preferred route), and thus this variant of the task was 

unsuitable for assessing differences in place cell activity between routes and goals. 

 

Place cell recording 

After recovery from surgery, rats were screened daily for place cells in the open field 

apparatus. Upon the identification of place cells, an uninterrupted recording session was 

conducted. After a 10-15 minute long recording session in the open field, rats were placed in 

the start box of the maze and the open field environment was removed. Rats were allowed a 60 

second rest period in the start box before starting the win-stay, lose-shift task in the maze. The 

behavioural protocol during the maze phase was comparable to that used during pre-surgery 
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training described above, with the exception that rats were required to make at least six correct 

trials within a block of trials before the reward location was changed. This was necessary to 

ensure adequate sampling of each trajectory. Between each trial, rats were confined to the 

start box for a minimum of six seconds (session mean = 9.34s, SD = 0.62s) in order to capture 

any possible differential firing which occurred there.   

At the end of the recording session, the animals were removed from the maze 

apparatus and the electrodes were lowered in order to maximise the chance of recording from 

a different population of cells on the following day. No attempt was made to track cells across 

days, and thus a subset of the cells may have been recorded on more than one session. Rats 

were tested until cells were no longer observed (range 3 - 17 sessions).  

 

Cluster Cutting  

Single unit activity was analysed offline using a Matlab script that allowed the data files 

to be processed by the Klustakwik spike sorting program (Kadir, Goodman, & Harris, 2013). The 

dimensionality of the waveform information was reduced to first principal component, energy, 

peak amplitude, peak time, and width of waveform. The energy of a signal x was defined as the 

sum of squared moduli given by the formula: 

≜  | |  

Based on these parameters, Klustakwik spike sorting algorithms were then used to distinguish 

and isolate separate clusters. The clusters were then further checked and refined manually 

using the manual cluster cutting GUI, Klusters (Hazan, Zugaro, & Buzsaki, 2006). As well as the 

previously mentioned features, manual cluster cutting also made use of spike auto- and cross-
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correlograms. Cluster quality was operationalised by calculating isolation distance (Iso-D), Lratio, 

signal to noise ratio (S/N) and peak waveform amplitude, taken as the highest amplitude 

reached by the four mean cluster waveforms. For cluster C, containing nc spikes, Iso-D is defined 

as the squared Mahalanobis distance of the nc-th closest non-c spike to the centre of C. The 

squared Mahalanobis distance was calculated as: 

, =  − −  

where xi is the vector containing features for spike i, and µc is the mean feature vector for 

cluster C. A higher value indicates better isolation from non-cluster spikes (Schmitzer-Torbert & 

Redish, 2005). The L quantity was defined as: 

=  1 −  ,∉C  

where i∉C is the set of spikes which are not members of the cluster and  is the 

cumulative distribution function of the  distribution with 8 degrees of freedom. The cluster 

quality measure, Lratio was thus defined as L divided by the total number of spikes in the cluster 

(Schmitzer-Torbert & Redish, 2004). As the signal and noise are both measured across the same 

impedance signal to noise ratio (S/N) was defined as: 

   = √√  

where µ is the mean of the waveform amplitude. For noise we used the noise cluster which 

accompanied unit spikes on that tetrode. All four quality measures were assessed for their 

potential impact on our analyses by comparing the values observed in differential cells to non-

differential place cells and by assessing the relationship between these measures and rANCOVA 

F-statistic (as suggested by Schmitzer-Torbert & Redish, 2005). 
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Place Cell Identification 

A cluster was classified as a place cell on the maze if it satisfied the following criteria: i) 

the width of the waveform was >250us, ii) the mean firing rate on the maze was greater than 

0.1 Hz but less than 5Hz (see Figure 6A) and iii) the spatial information content was greater than 

0.5b/s. Spatial information content is given by the equation: 

 =  ⁄ log ⁄  

where i is the bin number, Pi is the probability for occupancy of bin i, Ri is the mean firing rate 

for bin i, and R is the overall average firing rate (Skaggs et al., 1993). 

Firing rate maps were used to quantify the number of distinguishable place fields on the 

maze.  The rate maps were generated using an algorithm described by the following equations. 

The Gaussian kernel used is given by: 
 =  exp −x2  

 
The algorithm for calculating firing rate is then given by: 
 =  ℎ −  ℎ  

 
where Si represents the positions of every recorded spike, x is the centre of the current bin, the 

period [0 T] is the recording session time period, y(t) is the position of the rat at time t, and h is 

a smoothing factor, which was set to 2.5 cm. Bins in which the rat did not explore within 5cm of 

the centre were regarded as having never being visited.  

 

Place cell firing in the Centre Goal Box  
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If rats were aware that both Routes 2 and 3 led to the same goal box we would expect 

place cells to represent this location similarly regardless of the route taken there. Furthermore, 

we would expect higher correlations between the place cell activity in the Centre Goal Box 

when accessed via Route 2 and Route 3, than between activity in other pairs of boxes (e.g. the 

Left Box accessed via Route 1 and the Centre Goal Box when accessed by Route 2), and also 

that the activity in the Centre Goal Box when accessed by the two routes would more highly 

correlated than expected by chance. 

To test this we generated a population vector, consisting of the firing rates of all place 

cells from all animals and sessions in the Centre Goal Box when the animals navigated using 

Route 2. We calculated the Spearman’s ranked correlation between this vector and the 

population vector for the Centre Goal Box when animals navigated using Route 3. Lastly we 

calculated the ranked correlation between these two vectors and vectors for the Left and Right 

Goal Boxes; each of these boxes was represented by only one vector as there was only one 

possible route to each. This analysis provides six correlation values representing the 

comparison of the goal box activity at the end of each route to every other one. Next we 

calculated the probability that each of these values could occur by chance.  

To do this we calculated the ranked correlation between each of the population vectors 

described above with a novel vector composed of random firing rate values from each cell (in 

effect shuffling route identity, whilst maintaining the order of the cells) after removing those 

firing rates belonging to the original population vector. This process was repeated 10000 times 

and the probability of the original correlation value occurring by chance was then estimated as 

the percentile position of that value in the distribution of correlation values resulting from the 

shuffled correlations (using a kernel smoothed cumulative density function). This analysis tells 
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us the probability of any two population vectors being similar by chance or in other words the 

likelihood that all place cells would fire similarly in two goal boxes by chance.  

 

Differential place cell firing  

To assess whether place fields in areas of the maze that were traversed on more than 

one route were modulated by the route and/or by the goal, we focussed on activity occurring in 

four segments of the maze: the start box and the initial corridor or central stem (which were 

each common to all four routes and all three goals) and the right and left stems (each common 

to two routes and two goals) (Figure 1C).   

The analysis for each segment was conducted only for neurons that had been identified 

as place cells in the maze environment, and that were active in that segment (active being 

defined as a mean firing >1Hz in the maze segment on at least one of the four (or two) possible 

routes when all of the individual trajectories along one route were combined).  

For each place cell that was active in a given segment of the maze, the firing rate in that 

segment was calculated for each trial (total number of spikes in segment/time in segment), 

together with the average x- and y- coordinates occupied by the anima for each trial, and the 

average velocity of the animal in that segment (total distance travelled in segment/total time 

spent there) for each trial. We then assessed whether firing rate differed between trials on 

which the animal had taken the four different routes using three different methods. See Figure 

3 – figure supplement 1 for an example of the parameters used in the following analyses. 

Method one, reported in the main text, used a nonparametric ANCOVA described 

previously (Quade, 1967). Briefly, this test consists of replacing the dependent variable (DV) and 

covariates (COV) with ranked equivalents. A linear regression is then performed on these 

ranked covariates against the DV, ignoring the independent variable (IV). A one-way ANOVA is 
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then performed on the unstandardized residuals resulting from this regression against the 

original IV. If this was found to be significantly modulated by the animal’s route (p < .05) after 

controlling for the effects of the covariates, we conducted planned post-hoc tests. These 

consisted of six pairwise comparisons of the estimated marginal means between the four 

routes. This method was carried out in Matlab using the functions tiedrank for ranking, fitlm for 

the linear regression, anova1 for the one way ANOVA and multcompare for the post hoc tests. 

Method two employed a similarly nonparametric form of the ANCOVA test. We 

conducted an ANCOVA on the firing rate data using the same DV, IV and COV as above. We 

then compared the F-statistic obtained from this test to a distribution of F-statistics obtained 

after randomly shuffling the DV and repeating the ANCOVA. We then computed a p-value by 

the following method: 

=  # ≥  
 

where p is the probability that the observed F-value could have been obtained by chance, Fshuff 

is the distribution of F-values obtained by shuffling the DV, Fobs is the F-value obtained when 

testing the unshuffled DV and k is the number of shuffles conducted. For our tests we 

conducted 5000 shuffles. 

Method three employed a Generalized Linear Model (GLM) approach instead of an 

ANCOVA. We conducted a linear GLM on the DV, IV and COV described above with the 

underlying distribution assumed to be Poisson (Di Lorenzo & Victor, 2013) and a log link 

function. If firing rate was found to be significantly modulated by the animal’s route (p < .05) 

after controlling for the effects of the covariates, we conducted planned post-hoc tests. These 

consisted of six Mann-Whitney U tests comparing firing rates for every possible combination of 
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the four routes. This method was carried out in Matlab using the functions fitglm to build the 

GLM and ranksum for the post hoc tests. 

 

Ensemble Analysis 

As an additional means of assessing the route- versus goal-related place cell firing, we 

tested whether the animal’s trajectory could be derived from the ensemble activity of recorded 

place cells. If place cells show route-dependent activity at the ensemble level, then we would 

expect an automated route determination method to be equally accurate for all four routes, as 

each would be discriminable using the ensemble. In contrast, if ensembles reflect goal 

anticipation, then route determination should be significantly less accurate for the two central 

routes, as both lead to the same goal. 

Ensemble analyses were conducted separately for two segments of the maze: the start 

box and central stem. The animals traversed each of these zones on all trials and the 

trajectories within them should have remained similar regardless of which route the animals 

were taking. For each session and for each of these maze segments we compared the firing of 

all place cells on an individual trajectory (i.e. Route 1 to the Left Goal Box) to the average firing 

of these cells across all trajectories to each goal. In this way, we compared population vectors 

for every route to four, average firing rate, population vectors. However, the single trajectory 

being compared was not included in the calculation of its average goal vector, removing the 

possibility that it influenced the outcome of the assessment. To assess the similarity of each 

route population vector to each of the four goal vectors we used a cosine distance or cosine 

similarity measure defined as: 
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=  ∑∑ ∑ =  〈 , 〉‖ ‖‖ ‖ 

This calculation gives a value bounded between 0 and 1 if x and y are non-negative (such as 

firing rates). Cosine similarity can be interpreted as the cosine of the angle between two 

vectors, or as an alternative to the Pearson correlation that is sensitive to shifts in group 

values (i.e. If x is shifted to x+1, the cosine similarity between x and y changes). 

We next calculated the proportion of these comparisons which resulted in a ‘correct’ 

match between route vector and its corresponding goal vector and the proportion of those 

which suggested a similarity to one of the other goal vectors (a match was taken as the goal 

vector resulting in the highest similarity score). This was repeated for every session included in 

the analysis. In order to calculate the probability of correct matches being made by chance, we 

also repeated the above process 10000 times using four goal vectors where the identity of the 

route (but not of the contributing neuron) were shuffled, therefore disrupting any relationship 

between firing rate and the animal's trajectory. The probability that the proportion of correct 

matches made in our unshuffled analysis was the result of chance was estimated by calculating 

the percentile position of our observed proportion of matches in the distribution observed in 

the shuffled data. We did this using a kernel smoothed cumulative density function - Matlab 

function ksdensity. An Epanechnikov kernel was employed as it is one of the most widely used, 

optimal filters and we set bandwidth to the ‘default’ mode for all distributions. A brief outline 

of this process can be seen in Figure 7. We reasoned that if the central routes were represented 

more similarly (due to goal location dependent firing at an ensemble level) then we would 

expect an above chance level of matches between trajectories along Route 2 and the goal 
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vector calculated for Route 3 (and vice versa) or we may expect fewer correct matches for the 

central routes than for the outer ones. 

Histology 

At the end of the experiment animals were given an overdose of pentobarbital 

intraperitoneally (Euthatal, Merial Animal Health Ltd., Essex, UK), and perfused with 0.9% saline 

solution followed by a 4% formalin solution.  The brain was extracted and stored in 4% formalin 

for at least seven days prior to any histological analyses. The brains were sliced in 32µm 

sections on a freezing microtome at -20°. These sections were stained with a 0.1% cresyl violet 

solution and the slice best representing the electrode track was then imaged using ImageJ 

software (ImageJ, NIH, Bethesda). 
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Figure titles and legends 

Figure 1. Maze apparatus with two routes leading to the same goal. A, Top down view of the 

maze apparatus showing its layout including the start box, the three goal boxes, and the 

alleyways and choice points linking them. B, The four trained routes through the maze. C, Maze 

areas analysed for differential place cell firing. D, Predictions of goal and route accounts of 

differential place cell firing.  If differential firing of a place cells in the maze stem reflects the 

animal’s intended goal (Prediction 1 - left plots), then a given cell should fire when the animals 

takes either the left or right route to the same goal.  If such firing reflects the animal’s route 

(Prediction 2 - right plots), firing should be seen on one route, but not the other. E, Schematic 

of a representative daily session. Trials were blocked such that the same goal box was correct 

for at least 11 trials.  The reward was then moved to a different goal box, and once it had been 

encountered by the rat, 11 further trials were run.  In each session, all four routes were 

reinforced, although the order of this changed across sessions.   

Figure 2. Acquisition of the win-stay task. A, The mean number of errors preceding the 

identification of the reinforced goal box in each block of trials (broken line) did not change 

significantly across training sessions. However, the number of errors following the identification 

of the reinforced goal box in each block of trials (solid line) decreased significantly across 

training. B, The mean time taken to complete each trial preceding the identification of the 

reinforced goal box (broken line) did not change significantly across training sessions. However, 

the time taken following the identification of the reinforced goal box (solid line) decreased 

significantly. Error bars depict SEM. C, Mean total number of errors summed across 10 training 

sessions on trials in which the centre goal box was rewarded (black) and on trials in which the 

Left and Right Goal Boxes were rewarded (white), after the rewarded goal box had been 
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identified in a block of trials. Rats made significantly more errors on trials when the two routes 

to the Centre Goal Box were rewarded than on trials when the two routes leading to the Left 

and Right Goal Boxes were rewarded. D, Mean total number of errors on each session for trials 

on which the Centre Goal Box (black) and the Left and Right Goal Boxes (white) were rewarded. 

E, Mean number of errors summed across 10 training sessions broken down by the nature of 

the error. For example, the first bar shows the average number of times the rats incorrectly 

chose Route 1 when Route 2 was rewarded, plus the number of times they chose Route 2 when 

Route 1 was rewarded. The number of confusion errors between routes to different goal boxes 

(hollow bars) was similar, regardless of route combination.  However, there were significantly 

more confusion errors for the two routes to Centre Goal Box (filled bar). Error bars depict SEM. 

Figure 3. Differential firing throughout the maze. A, Heat map showing the position of every 

place field recorded on the maze apparatus, the corresponding colour axis is shown in the top 

left corner.  Place cells over-represented the start of the maze as shown by the large number of 

place fields observed there. B, There was a linear decrease in the percentage of active (firing 

above 1Hz) place cells as the distance from the start box increased. C, Place cell firing rates tend 

to be highest in the central stem and first choice point. This pattern approximately follows the 

average running speeds of the rats in the maze, except in the goal boxes where a slight increase 

in firing rate is also observed. Marker colours follow the key given for panel A. Lines show fitted 

3rd order polynomials. D, Representative example cells which, clockwise from the top left, 

show differential firing in the start box, central stem, left and right stems of the maze. E, 

Number of place cells (black bars) active in each area of the maze tested for differential firing, 

and the number of these which are showed differential firing (hollow bars). The percentage of 

active place cells that showed differential firing in each area is indicated by the number written 
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within the hollow bars. F, The average firing rate of place cells and differential cells in the start 

box of the maze when this firing was divided into four bins of equal duration. Higher firing was 

observed in bin 1, just after the rat is placed in the start box and in bin 4, just before the holding 

barrier was removed. 

Figure 4. Four representative place cells, two per row, which show differential firing in the start 

box of the maze.  For each cell, the firing rate map for the session is shown, but with data 

divided into trials in which the animals took each of the four possible routes. The area of this 

map in which differential activity was detected is highlighted, and this area is also shown, 

enlarged, below the firing rate map. The colour axis for the main and enlarged maps is scaled 

from 0Hz to the maximum firing rate in the map. The colour bar for these is given between the 

last two cells. The maximum firing rate in each map is denoted by a number found to its bottom 

right. The rat number, date of recording, electrode and cluster are given at the top left of the 

main firing rate map. The mean and SEM firing rate for the four trajectories is shown in a bar 

plot to the top right of the man firing rate map. These bars are coloured differently for each rat. 

Further examples can be found in Figure 4 – figure supplement 1. 

Figure 5. Distribution of place cells with differential firing. A, Number of differential cells in the 

start box and central stem of the maze, sorted by preferred route. B, Number of differential 

cells in left and right arms of the maze, again sorted by preferred route. See Figure 3 – figure 

supplement 1 for a breakdown of the parameters used by the ANCOVA analyses to determine 

differential activity. See Supplementary file 1 (tables 1-4) for the results of the alternative 

differential activity statistical methods. 

Figure 6. Population characteristics and signal quality measures and their impact on rANCOVA 

outcome. A, Density plot showing firing rate plotted against width of waveform for every 
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cluster (n = 641) in our population. Our cut-offs for characterising units as pyramidal cells are 

shown as white dotted lines. We also used a spatial information content threshold of 0.5b/s to 

further differentiate pyramidal cells from place cells. B, Distribution of isolation distance (left), 

Lratio (middle left), signal to noise ratio (middle right) and peak amplitude (right) values for place 

cells that did not show differential activity (black shaded area) and for place cells which fired 

differentially on the maze (grey shaded area). These measures of cluster and signal quality did 

not differ significantly between the two groups of cells (p > .05 in all cases, Kolmogorov-

Smirnov tests, test statistics are shown on each plot). C, The relationship between isolation 

distance (left), Lratio (middle left), signal to noise ratio (middle right) and peak amplitude (right) 

values and rANCOVA F-statistics calculated for all four maze areas assessed for differential 

firing.  Each point represents a place cell assessed for differential firing in a maze segment (thus 

there can be a maximum of four points for one cell); darker areas denote overlapping points 

and thus data density. None of these measures are significantly correlated with rANCOVA 

outcome and thus differential firing (p > .05 in all cases, Spearman’s pairwise correlations, test 

statistics are shown on each plot). 

Figure 7. Ensemble decoding of trajectories (routes). The colour bar for plots A-C, is given to the 

right of C, the colour bar for E and F is given to the right of F. B, Trajectory population vectors 

(PVs) were compared to session PVs and matched according to highest cosine similarity score. 

Tiles here show the percentage number of each trajectory matched to each of the session PVs 

only for the start box of the maze. For example the tile highlighted in blue shows the 

percentage number of Route 1 PVs correctly matched to the session PV for Route 1. A, Matches 

were also made using shuffled data, where the session PVs were randomly shuffled for each 

neuron. The tiles here show the same as (B), except that this data is for one shuffle (10000 
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were conducted in total). C, shows how the contents of the lower left tiles in (A) and (B) can be 

used to calculate a probability or p-value for the number of matches made here. The grey 

shaded curve shows the distribution of percentage correct matches for Route 1’s PV to its 

session PV for all 10000 shuffles. The red line indicates where the value from the shown 

shuffled tile would fall. The blue line shows where the value from B (the actual data) would fall. 

A kernel smoothed cumulative density estimate (Epanechnikov) was then used to calculate the 

percentile value or probability of the real data value, given the shuffled distribution. E, shows 

the results of this analysis, here is shown the probability of the percent correct matches made 

in (B), given the distributions in (A). Note that trajectories are only significantly matched to 

their corresponding session PVs. Furthermore, Routes 2 and 3 are not matched to each other 

significantly more than would be expected by chance. C and F, show the same as (B) and (E) 

respectively, but for the central stem of the maze. See Figure 7 – figure supplement 1 for 

ensemble analysis at the single trial level. 

Figure 8. Place cell coding of the Centre Goal Box A, A representative cell which fires similarly in 

the Centre Goal Box regardless of which route the animal took to get there. The firing rate map 

for a whole maze session is shown.  This is divided into the four possible trajectories but is 

plotted using one colour axis scaled from 0-20 Hz. Surrounding this, activity in each of the four 

goal boxes has been enlarged. This pattern of firing suggests that the animal was aware this 

goal box occupied a single spatial location and was thus one box at the end of two distinct 

trajectories. B, Left, the result of Spearman’s correlations comparing the firing of all place cells, 

from all rats and sessions in each pair of goal boxes, depending on the route taken to get there 

(i.e. firing in the Left Goal Box at the end of Route 1, the Centre Goal Box when at the end of 

Route 2, the Centre Goal Box at the end of Route 3 and finally the Right Goal Box at the end of 
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Route 4). Correlations comparing the firing in each box to itself were not calculated and have 

thus been coloured white. Correlations are generally high, however, correlations comparing 

firing in the Centre Goal Box when it was accessed using the two different routes are the 

highest (i.e. Route 2 vs. Route 3 and vice versa), confirming that cells fire similarly in this box 

regardless of the route taken to get there. This suggests that rats and cells considered the 

Centre Goal Box to be one coherent spatial location. B, Right, the results of a shuffling 

procedure to determine if the correlations are higher than would be expected by chance. Only 

those correlations between firing in the Centre Goal Box for Routes 2 and 3 are statistically 

significant (p < .05). This test confirms that firing in the Centre Goal Box is more similar than 

would be expected by chance and that this firing is more similar than that between other pairs 

of goal boxes. 

Figure 9. Histological confirmation of electrode placement.  A, Coronal section of hippocampus 

with electrode track (inset: higher magnification view).  B, Schematic of individual electrode 

tracks towards the CA1 cell layer of the hippocampus.  Arrows represent the angle and depth of 

implantation with the arrow tip showing the point at which the electrode passed through the 

CA1 cell layer. No electrodes contacted lower cell layers. Each arrow is labelled with a rat 

number and an estimated anterior-posterior (AP) coordinate (the schematic shows a slice at an 

AP -3.48 mm from bregma - the intended coordinate). 
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Figure supplements and rich media files: 

Figure 3 – figure supplement 1. Diagram of parameters used in all ANCOVA analyses. 

Figure 4 – figure supplement 1. Representative differential cells included in the route/goal 
analysis. 

Figure 4 – figure supplement 2. Four examples of differential firing on all trials within a session. 

Figure 7 -  figure supplement 1. Analysis of ensemble decoding within blocks of trials. 

Supplementary file 1. Analysis of differential firing using three different statistical methods. 

Movie 1. Example of a place cell that fires differentially in the start box of the maze. 

 

Supplementary Figure legends: 

Figure 3 – figure supplement 1. Diagram of parameters used in all ANCOVA analyses. A, All 

trajectories from a representative recording session. Paths are coloured according to the rat’s 

final destination, and this colour scheme is maintained in the panels below. B, An enlarged view 

of each maze area analysed for differential activity.  For this panel and the following ones, data 

for one maze area are shown per column. C, The average x- y-coordinate recorded for each 

trajectory.  The error bars signify the standard error of the mean in both the x and y-dimension 

for each trajectory. D, The speed of the rat recorded for each trajectory.  Speed was calculated 

as the total distance travelled in a maze area, such as the start box, divided by the total time 

spent in that area. 

Figure 4 – figure supplement 1. Representative differential cells included in the route/goal 

analysis. Three example cells are given per row.  For each cell, the firing rate map for the 

session is shown, but with data divided into the four possible trajectories. The area of this map 

in which differential activity was detected is highlighted, this area is also shown, enlarged, 

below the firing rate map. The colour axis for the main and enlarged maps is scaled from 0Hz to 

the maximum firing rate in the map, and the colour bar for these is shown to the right of the 
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last example cell. The maximum firing rate in each map is denoted by a number found to its 

bottom right. The rat number, date of recording, electrode and cluster are given at the top left 

of the main firing rate map. The mean and SEM firing rate for the four trajectories is shown in a 

bar plot to the top right of the man firing rate map. These bars are coloured differently for each 

rat. One neuron (6202 130108 E6 C2) fires in a goal manner; similarly for routes 2 and 3.  

Figure 4 – figure supplement 2.   Four examples of differential firing on all trials within a 

session.  The firing rate (black bars) and the velocity (black line) of each cell in the highlighted 

maze segment(s) is plotted for each trajectory in a given session. Note that this firing is 

generally higher only for those trajectories leading to one goal, regardless of the order of these 

trajectories within the session.  

Figure 7 – figure supplement 1. Analysis of ensemble decoding within blocks of trials. When the 

firing rates of specific trajectories within blocks of trials were compared to their goal population 

vector, no significant increase or decrease in the number of correct matches (left graph) or 

cosine similarity value (right graph) over time were observed.  This suggests that ensemble 

firing did not change significantly over the course of a block. The average number of trials 

completed per block was 12.5, and thus values after this point are not shown. Rats were well 

trained pre-surgery and made few errors during recording.  Furthermore, the few errors that 

were made during recording were omitted from this ensemble analysis. 

 

 




















