172 research outputs found

    Genomic Diversity Using Copy Number Variations in Worldwide Chicken Populations

    Get PDF
    Recently, many studies in livestock have focused on the identification of Copy Number Variants (CNVs) using high-density Single Nucleotide Polymorphism (SNP) arrays, but few have focused on studying chicken ecotypes coming from many locations. CNVs are polymorphisms, which may influence phenotype and are an important source of genetic variation in populations. The aim of this study was to explore the genetic difference and structure, using a high density SNP chip in 936 individuals from seven different countries (Brazil, Italy, Egypt, Mexico, Rwanda, Sri Lanka and Uganda). The DNA was genotyped with the Affymetrix Axiom®600k Chicken Genotyping Array and processed with stringent quality controls to obtain 559,201 SNPs in 915 individuals. The Log R Ratio (LRR) and the B Allele Frequency of SNPs were used to perform the CNV calling with PennCNV software based on a Hidden Markov Model analysis and the LRR was used to perform CNV detection with SVS Golden Helix software.After filtering, a total of 19,027 CNVs were detected with the SVS software, while 9,065 CNVs were identified with the Penn CNV software. The CNVs were summarized in 7,001 Copy Number Variant Regions (CNVRs) and 4,414 CNVRs, using the software BedTool.The consensus analysis across the CNVRs allowed the identification of 2,820 consensus CNVR, of which 1,721 were gain, 637 loss and 462 complex, for a total length of 53 Mb corresponding to the 5 % of the GalGal5 chicken autosomes. Only the consensus CNV regions obtained from both detections were considered for further analysis.The intersection analysis performed between the chicken gene database (Gallus_gallus-5.0) and the 1,927 consensus CNVRs allowed the identification (within or partial overlap) of a total of 2,354 unique genes with an official gene ID.  The CNVRs identified here represent the first comprehensive mapping in several worldwide populations, using a high-density SNP chip

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony

    Get PDF
    Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services

    Five mucosal transcripts of interest in ulcerative colitis identified by quantitative real-time PCR: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cause and pathophysiology of ulcerative colitis are both mainly unknown. We have previously used whole-genome microarray technique on biopsies obtained from patients with ulcerative colitis to identifiy 5 changed mucosal transcripts. The aim of this study was to compare mucosal expressions of these five transcripts in ulcerative colitis patients vs. controls, along with the transcript expression in relation to the clinical ulcerative colitis status.</p> <p>Methods</p> <p>Colonic mucosal specimens from rectum and caecum were taken at ambulatory colonoscopy from ulcerative colitis patients (<it>n </it>= 49) with defined inflammatory activity and disease extension, and from controls (<it>n </it>= 67) without inflammatory bowel disease. The five mucosal transcripts aldolase B, elafin, MST-1, simNIPhom and SLC6A14 were analyzed using quantitative real-time PCR.</p> <p>Results</p> <p>Significant transcript differences in the rectal mucosa for all five transcripts were demonstrated in ulcerative colitis patients compared to controls. The grade of transcript expression was related to the clinical disease activity.</p> <p>Conclusion</p> <p>The five gene transcripts were changed in patients with ulcerative colitis, and were related to the disease activity. The known biological function of some of the transcripts may contribute to the inflammatory features and indicate a possible role of microbes in ulcerative colitis. The findings may also contribute to our pathophysiological understanding of ulcerative colitis.</p

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

    Get PDF
    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function

    Observing GRBs with the LOFT Wide Field Monitor

    Get PDF
    LOFT (Large Observatory For X-ray Timing) is one of the four candidate missions currently under assessment study for the M3 mission in ESAs Cosmic Vision program to be launched in 2024. LOFT will carry two instruments with prime sensitivity in the 2-30 keV range: a 10 m2 class large area detector (LAD) with a <1° collimated field of view and a wide field monitor (WFM) instrument. The WFM is based on the coded mask principle, and 5 camera units will provide coverage of more than 1/3 of the sky. The prime goal of the WFM is to detect transient sources to be observed by the LAD. With its wide field of view and good energy resolution of <500 eV, the WFM will be an excellent instrument for detecting and studying GRBs and X-ray flashes. The WFM will be able to detect ~150 gamma ray bursts per year, and a burst alert system will enable the distribution of ~100 GRB positions per year with a ~1 arcmin location accuracy within 30 s of the burst

    Fruit crops: a summary of research, 1998

    Get PDF
    Pesticide deposition in orchards: effects of pesticide type, tree canopy, timing, cultivar, and leaf type / Franklin R. Hall, Jane A. Cooper, and David C. Ferree -- The influence of a synthetic foraging attractant, Bee-Scent™, on the number of honey bees visiting apple blossoms and on subsequent fruit production / James E. Tew and David C. Ferree -- The reliability of three traps vs. a single trap for determining population levels of codling moth in commercial northern Ohio apple orchards / Ted W. Gastier -- Evaluation of an empirical model for predicting sooty blotch and flyspeck of apples in Ohio / Michael A. Ellis, Laurence V. Madden, and L. Lee Wilson -- Influence of pesticides and water stress on photosynthesis and transpiration of apple / David C. Ferree, Franklin R. Hall, Charles R. Krause, Bruce R. Roberts, and Ross D. Brazee -- Influence of temporary bending and heading on branch development and flowering of vigorous young apple trees / David C. Ferree and John C. Schmid -- The effect of apple fruit bruising on total returns / Richard C. Funt, Ewen A. Cameron, and Nigel H. Banks -- Yield, berry quality, and economics of mechanical berry harvest in Ohio / Richard C. Funt, Thomas E. Wall, and Joseph C. Scheerens -- Monitoring flower thrips activities in strawberry fields at two Ohio locations / Roger N. Williams, M. Sean Ellis, Dan S. Fickle, and Carl M. Pelland -- Cluster thinning effects on fruit weight, juice quality, and fruit skin characteristics in 'Reliance' grapes / Yu Gao and Garth A. Cahoon -- Effects of various fungicide programs on powdery mildew control, percent berry sugar, yield, and vine vigor of 'Concord' grapes in Ohio / Michael A. Ellis, Laurence V. Madden, L. Lee Wilson, and Gregory R. Johns -- Influence of growth regulators, cropping, and number on replacement trunks of winter-injured 'Vidal Blanc' grapes / David C. Ferree, David M. Scurlock, and Rick Evans -- Effect of new herbicides on tissue-cultured black raspberry plants / Richard C. Funt, Thomas E. Wall, and B. Dale Stokes -- Investigating the relationship between vine vigor and berry set of field-grown 'Seyval Blanc' grapevines / Steven J. McArtney and David C. Ferree -- Summary of Ohio Fruit Growers Society apple cider competition, 1993-1997 / Winston Bash and Diane Mille

    The Therapeutic effect of Memantine through the Stimulation of Synapse Formation and Dendritic Spine Maturation in Autism and Fragile X Syndrome

    Get PDF
    Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs) from Fmr1 knockout (KO) mice, a mouse model for fragile X syndrome (FXS) and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs

    Comparative Genomics of Gardnerella vaginalis Strains Reveals Substantial Differences in Metabolic and Virulence Potential

    Get PDF
    Gardnerella vaginalis is described as a common vaginal bacterial species whose presence correlates strongly with bacterial vaginosis (BV). Here we report the genome sequencing and comparative analyses of three strains of G. vaginalis. Strains 317 (ATCC 14019) and 594 (ATCC 14018) were isolated from the vaginal tracts of women with symptomatic BV, while Strain 409-05 was isolated from a healthy, asymptomatic individual with a Nugent score of 9.Substantial genomic rearrangement and heterogeneity were observed that appeared to have resulted from both mobile elements and substantial lateral gene transfer. These genomic differences translated to differences in metabolic potential. All strains are equipped with significant virulence potential, including genes encoding the previously described vaginolysin, pili for cytoadhesion, EPS biosynthetic genes for biofilm formation, and antimicrobial resistance systems, We also observed systems promoting multi-drug and lantibiotic extrusion. All G. vaginalis strains possess a large number of genes that may enhance their ability to compete with and exclude other vaginal colonists. These include up to six toxin-antitoxin systems and up to nine additional antitoxins lacking cognate toxins, several of which are clustered within each genome. All strains encode bacteriocidal toxins, including two lysozyme-like toxins produced uniquely by strain 409-05. Interestingly, the BV isolates encode numerous proteins not found in strain 409-05 that likely increase their pathogenic potential. These include enzymes enabling mucin degradation, a trait previously described to strongly correlate with BV, although commonly attributed to non-G. vaginalis species.Collectively, our results indicate that all three strains are able to thrive in vaginal environments, and therein the BV isolates are capable of occupying a niche that is unique from 409-05. Each strain has significant virulence potential, although genomic and metabolic differences, such as the ability to degrade mucin, indicate that the detection of G. vaginalis in the vaginal tract provides only partial information on the physiological potential of the organism
    corecore