268 research outputs found

    Vibronic spectroscopy of an artificial molecule

    Get PDF
    With advanced fabrication techniques it is possible to make nanoscale electronic structures that have discrete energy levels. Such structures are called artificial atoms because of analogy with true atoms. Examples of such atoms are quantum dots in semiconductor heterostructures and Josephson-junction qubits. It is also possible to have artificial atoms interacting with each other. This is an artificial molecule in the sense that the electronic states are analogous to the ones in a molecule. In this letter we present a different type of artificial molecule that, in addition to electronic states, also includes the analog of nuclear vibrations in a diatomic molecule. Some of the earlier experiments could be interpreted using this analogy, including qubits coupled to oscillators and qubits driven by an intense field. In our case the electronic states of the molecule are represented by a Josephson-junction qubit, and the nuclear separation corresponds to the magnetic flux in a loop containing the qubit and an LC oscillator. We probe the vibronic transitions, where both the electronic and vibrational states change simultaneously, and find that they are analogous to true molecules. The vibronic transitions could be used for sideband cooling of the oscillator, and we see damping up to sidebands of order 10.Comment: 5 pages, 4 figure

    Direct Wigner tomography of a superconducting anharmonic oscillator

    Full text link
    The analysis of wave-packet dynamics may be greatly simplified when viewed in phase-space. While harmonic oscillators are often used as a convenient platform to study wave-packets, arbitrary state preparation in these systems is more challenging. Here, we demonstrate a direct measurement of the Wigner distribution of complex photon states in an anharmonic oscillator - a superconducting phase circuit, biased in the small anharmonicity regime. We test our method on both non-classical states composed of two energy eigenstates and on the dynamics of a phase-locked wavepacket. This method requires a simple calibration, and is easily applicable in our system out to the fifth level.Comment: 5 figures, 1 table and supplementary materia

    Sub-Planck scale structures in the P{\"o}schl-Teller potential and their sensitivity to perturbations

    Full text link
    We find the existence of sub-Planck scale structures in the P{\"o}schl-Teller potential, which is an exactly solvable potential with both symmetric and asymmetric features. We analyze these structures in both cases by looking at the Wigner distribution of the state evolved from an initial coherent state up to various fractional revival times. We also investigate the sensitivity to perturbations of the P{\"o}schl-Teller potential and we verify that, similar to the harmonic oscillator, the presence of sub-Planck structure in phase space is responsible for a high sensitivity to phase-space displacements.Comment: 9 pages, 7 figures, replaced with revised version. Accepted for publication in Phys. Rev.

    Robustness Analysis of Pin Joining

    Get PDF
    The trend towards lightweight design, driven by increasingly stringent emission targets, poses challenges to conventional joining processes due to the different mechanical properties of the joining partners used to manufacture multi-material systems. For this reason, new versatile joining processes are in demand for joining dissimilar materials. In this regard, pin joining with cold extruded pin structures is a relatively new, two-stage joining process for joining materials such as high-strength steel and aluminium as well as steel and fibre-reinforced plastic to multi-material systems, without the need for auxiliary elements. Due to the novelty of the process, there are currently only a few studies on the robustness of this joining process available. Thus, limited statements on the stability of the joining process considering uncertain process conditions, such as varying material properties or friction values, can be provided. Motivated by this, the presented work investigates the influence of different uncertain process parameters on the pin extrusion as well as on the joining process itself, carrying out a systematic robustness analysis. Therefore, the methodical approach covers the complete process chain of pin joining, including the load-bearing capacity of the joint by means of numerical simulation and data-driven methods. Thereby, a deeper understanding of the pin joining process is generated and the versatility of the novel joining process is increased. Additionally, the provision of manufacturing recommendations for the forming of pin joints leads to a significant decrease in the failure probability caused by ploughing or buckling effects

    Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator

    Get PDF
    We suggest a variant of the recently proposed experiment for the generation of a new kind of Schroedinger-cat states, using two coupled parametric down-converter nonlinear crystals [F. De Martini, Phys. Rev. Lett. 81, 2842 (1998)]. We study the parametric oscillator case and find that an entangled Schroedinger-cat type state of two cavities, whose mirrors are placed along the output beams of the nonlinear crystals, can be realized under suitable conditions.Comment: RevTeX 17 pages, 9 eps files for 7 figures. Submitted to Physical Review

    Europe’s electricity regime: restoration or thorough transition

    Get PDF
    Concerns about climate change, diminishing social acceptance of traditional fuels, and technological innovations have led several countries to pursue energy transition strategies, typically by massive diffusion of renewable electricity supplies. The German ‘Energiewende’ has been successful so far in terms of deploying renewable power, mainly by applying particular feed-in tariffs, and by bundling public, academic, industrial and political support. So far though, only few EU member states proceed with a similar transition. In March 2014 CEOs of Europe’s major energy companies publicly opposed a fast and thorough transformation of electricity supplies to become fully renewable. In April 2014 the European Commission published new state aid guidelines, generally mandating renewable energy support mechanisms (premiums, tenders) of lesser performance than regularly adjusted, specific feed-in tariffs. The new guidelines are likely to be pernicious for the fast deployment of renewable electricity supplies.In light of these challenges, this position paper highlights two implications of power sector transitions. First, the engineering-economics theory of power generation systems needs fundamental revision, mainly since a growing share of power sources no longer function on command. Second, and based on the experience in Germany, the paper sketches out a strategy for a thorough transition of the power sector, which, in the end, also entails normative judgements. Deep changes in energy systems and associated ways of living require societal consensus building based on ethical considerations

    Quantum Gas Mixtures and Dual-Species Atom Interferometry in Space

    Full text link
    The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space. Ultracold temperatures amplify quantum effects, while free-fall allows further cooling and longer interactions time with gravity - the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensation (BECs), superfluidity, and strongly interacting quantum gases. Quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the Universality of Free Fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 101210^{-12} level. In space, cooling the elements needed to explore the rich physics of strong interactions and preparing the multiple species required for quantum tests of the UFF has remained elusive. Here, utilizing upgraded capabilities of the multi-user Cold Atom Lab (CAL) instrument within the International Space Station (ISS), we report the first simultaneous production of a dual species Bose-Einstein condensate in space (formed from 87^{87}Rb and 41^{41}K), observation of interspecies interactions, as well as the production of 39^{39}K ultracold gases. We have further achieved the first space-borne demonstration of simultaneous atom interferometry with two atomic species (87^{87}Rb and 41^{41}K). These results are an important step towards quantum tests of UFF in space, and will allow scientists to investigate aspects of few-body physics, quantum chemistry, and fundamental physics in novel regimes without the perturbing asymmetry of gravity

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− μ + νμ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date
    corecore