77 research outputs found

    CFHTLS weak-lensing constraints on the neutrino masses

    Full text link
    We use measurements of cosmic shear from CFHTLS, combined with WMAP-5 cosmic microwave background anisotropy data, baryonic acoustic oscillations from SDSS and 2dFGRS and supernovae data from SNLS and Gold-set, to constrain the neutrino mass. We obtain a 95% confidence level upper limit of 0.54 eV for the sum of the neutrino masses, and a lower limit of 0.03 eV. The preference for massive neutrinos vanishes when shear-measurement systematics are included in the analysis.Comment: 10 pages. Published versio

    Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis

    Full text link
    The baryon acoustic oscillation (BAO) feature in the two-point correlation function of galaxies supplies a standard ruler to probe the expansion history of the Universe. We study here several galaxy selection schemes, aiming at building an emission-line galaxy (ELG) sample in the redshift range 0.6<z<1.70.6<z<1.7, that would be suitable for future BAO studies, providing a highly biased galaxy sample. We analyse the angular galaxy clustering of galaxy selections at the redshifts 0.5, 0.7, 0.8, 1 and 1.2 and we combine this analysis with a halo occupation distribution (HOD) model to derive the properties of the haloes these galaxies inhabit, in particular the galaxy bias on large scales. We also perform a weak lensing analysis (aperture statistics) to extract the galaxy bias and the cross-correlation coefficient and compare to the HOD prediction. We apply this analysis on a data set composed of the photometry of the deep co-addition on Sloan Digital Sky Survey (SDSS) Stripe 82 (225 deg2^2), of Canda-France-Hawai Telescope/Stripe 82 deep \emph{i}-band weak lensing survey and of the {\it Wide-Field Infrared Survey Explorer}infrared photometric band W1. The analysis on the SDSS-III/constant mass galaxies selection at z=0.5z=0.5 is in agreement with previous studies on the tracer, moreover we measure its cross-correlation coefficient r=1.16±0.35r=1.16\pm0.35. For the higher redshift bins, we confirm the trends that the brightest galaxy populations selected are strongly biased (b>1.5b>1.5), but we are limited by current data sets depth to derive precise values of the galaxy bias. A survey using such tracers of the mass field will guarantee a high significance detection of the BAO.Comment: 17 pages, 15 figures, submitted to MNRA

    Weak lensing in scalar-tensor theories of gravity

    Get PDF
    This article investigates the signatures of various models of dark energy on weak gravitational lensing, including the complementarity of the linear and non-linear regimes. It investigates quintessence models and their extension to scalar-tensor gravity. The various effects induced by this simplest extension of general relativity are discussed. It is shown that, given the constraints in the Solar System, models such as a quadratic nonminimal coupling do not leave any signatures that can be detected while other models, such as a runaway dilaton, which include attraction toward general relativity can let an imprint of about 10%.Comment: 25 pages, 29 figure

    Examination of the astrophysical S-factors of the radiative proton capture on 2H, 6Li, 7Li, 12C and 13C

    Full text link
    Astrophysical S-factors of radiative capture reactions on light nuclei have been calculated in a two-cluster potential model, taking into account the separation of orbital states by the use of Young schemes. The local two-body potentials describing the interaction of the clusters were determined by fitting scattering data and properties of bound states. The many-body character of the problem is approximatively accounted for by Pauli forbidden states. An important feature of the approach is the consideration of the dependence of the interaction potential between the clusters on the orbital Young schemes, which determine the permutation symmetry of the nucleon system. Proton capture on 2H, 6Li, 7Li, 12C, and 13C was analyzed in this approach. Experimental data at low energies were described reasonably well when the phase shifts for cluster-cluster scattering, extracted from precise data, were used. This shows that decreasing the experimental error on differential elastic scattering cross sections of light nuclei at astrophysical energies is very important also to allow a more accurate phase shift analysis. A future increase in precision will allow more definite conclusions regarding the reaction mechanisms and astrophysical conditions of thermonuclear reactions.Comment: 40p., 9 fig., 83 ref. arXiv admin note: substantial text overlap with arXiv:1005.1794, arXiv:1112.1760, arXiv:1005.198

    Measuring the dark side (with weak lensing)

    Full text link
    We introduce a convenient parametrization of dark energy models that is general enough to include several modified gravity models and generalized forms of dark energy. In particular we take into account the linear perturbation growth factor, the anisotropic stress and the modified Poisson equation. We discuss the sensitivity of large scale weak lensing surveys like the proposed DUNE satellite to these parameters. We find that a large-scale weak-lensing tomographic survey is able to easily distinguish the Dvali-Gabadadze-Porrati model from LCDM and to determine the perturbation growth index to an absolute error of 0.02-0.03.Comment: 19 pages, 11 figure

    The VIMOS Public Extragalactic Redshift Survey - Searching for Cosmic Voids

    Get PDF
    The characterisation of cosmic voids gives unique information about the large-scale distribution of galaxies, their evolution and the cosmological model. We identify and characterise cosmic voids in the VIMOS Public Extragalactic Redshift Survey (VIPERS) at redshift 0.55 < z < 0.9. A new void search method is developed based upon the identification of empty spheres that fit between galaxies. The method can be used to characterise the cosmic voids despite the presence of complex survey boundaries and internal gaps. We investigate the impact of systematic observational effects and validate the method against mock catalogues. We measure the void size distribution and the void-galaxy correlation function. We construct a catalogue of voids in VIPERS. The distribution of voids is found to agree well with the distribution of voids found in mock catalogues. The void-galaxy correlation function shows indications of outflow velocity from the voids

    Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing

    Full text link
    (abridged) We study the accuracy of various approximations to cosmic shear and weak galaxy-galaxy lensing and investigate effects of Born corrections and lens-lens coupling. We use ray-tracing through the Millennium Simulation to calculate various cosmic-shear and galaxy-galaxy-lensing statistics. We compare the results from ray-tracing to semi-analytic predictions. We find: (i) The linear approximation provides an excellent fit to cosmic-shear power spectra as long as the actual matter power spectrum is used as input. Common fitting formulae, however, strongly underestimate the cosmic-shear power spectra. Halo models provide a better fit to cosmic shear-power spectra, but there are still noticeable deviations. (ii) Cosmic-shear B-modes induced by Born corrections and lens-lens coupling are at least three orders of magnitude smaller than cosmic-shear E-modes. Semi-analytic extensions to the linear approximation predict the right order of magnitude for the B-mode. Compared to the ray-tracing results, however, the semi-analytic predictions may differ by a factor two on small scales and also show a different scale dependence. (iii) The linear approximation may under- or overestimate the galaxy-galaxy-lensing shear signal by several percent due to the neglect of magnification bias, which may lead to a correlation between the shear and the observed number density of lenses. We conclude: (i) Current semi-analytic models need to be improved in order to match the degree of statistical accuracy expected for future weak-lensing surveys. (ii) Shear B-modes induced by corrections to the linear approximation are not important for future cosmic-shear surveys. (iii) Magnification bias can be important for galaxy-galaxy-lensing surveys.Comment: version taking comments into accoun

    Indexing k-mers in linear space for quality value compression.

    Get PDF
    Many bioinformatics tools heavily rely on [Formula: see text]-mer dictionaries to describe the composition of sequences and allow for faster reference-free algorithms or look-ups. Unfortunately, naive [Formula: see text]-mer dictionaries are very memory-inefficient, requiring very large amount of storage space to save each [Formula: see text]-mer. This problem is generally worsened by the necessity of an index for fast queries. In this work, we discuss how to build an indexed linear reference containing a set of input [Formula: see text]-mers and its application to the compression of quality scores in FASTQ files. Most of the entropies of sequencing data lie in the quality scores, and thus they are difficult to compress. Here, we present an application to improve the compressibility of quality values while preserving the information for SNP calling. We show how a dictionary of significant [Formula: see text]-mers, obtained from SNP databases and multiple genomes, can be indexed in linear space and used to improve the compression of quality value. Availability: The software is freely available at https://github.com/yhhshb/yalff

    On the dissipative non-minimal braneworld inflation

    Full text link
    We study the effects of the non-minimal coupling on the dissipative dynamics of the warm inflation in a braneworld setup, where the inflaton field is non-minimally coupled to induced gravity on the warped DGP brane. We study with details the effects of the non-minimal coupling and dissipation on the inflationary dynamics on the normal DGP branch of this scenario in the high-dissipation and high-energy regime. We show that incorporation of the non-minimal coupling in this setup decreases the number of e-folds relative to the minimal case. We also compare our model parameters with recent observational data.Comment: 32 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:1001.044

    Cosmological models in scalar tensor theories of gravity and observations: a class of general solutions

    Full text link
    We consider cosmological models in scalar tensor theories of gravity that describe an accelerating universe, and we study a family of inverse power law potentials, for which exact solutions of the Einstein equations are known. We also compare theoretical predictions of our models with observations. For this we use the following data: the publicly available catalogs of type Ia supernovae and high redshift Gamma Ray Bursts, the parameters of large scale structure determined by the 2-degree Field Galaxy Redshift Survey (2dFGRS), and measurements of cosmological distances based on the Sunyaev-Zel'dovich effect, among others.Comment: 26 pages,23 figures, accepted for publication in A&
    • …
    corecore