15 research outputs found

    A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo

    Get PDF
    We have constructed a novel tetra-promoter vector (pBVboostFG) system that enables screening of gene/cDNA libraries for functional genomic studies. The vector enables an all-in-one strategy for gene expression in mammalian, bacterial and insect cells and is also suitable for direct use in vivo. Virus preparation is based on an improved mini Tn7 transpositional system allowing easy and fast production of recombinant baculoviruses with high diversity and negligible background. Cloning of the desired DNA fragments or libraries is based on the recombination system of bacteriophage lambda. As an example of the utility of the vector, genes or cDNAs of 18 different proteins were cloned into pBVboostFG and expressed in different hosts. As a proof-of-principle of using the vector for library screening, a chromophoric Thr(65)-Tyr-Gly(67)-stretch of enhanced green fluorescent protein was destroyed and subsequently restored by novel PCR strategy and library screening. The pBVboostFG enables screening of genome-wide libraries, thus making it an efficient new platform technology for functional genomics

    Efficient gene targeting mediated by a lentiviral vector-associated meganuclease

    Get PDF
    Gene targeting can be achieved with lentiviral vectors delivering donor sequences along with a nuclease that creates a locus-specific double-strand break (DSB). Therapeutic applications of this system would require an appropriate control of the amount of endonuclease delivered to the target cells, and potentially toxic sustained expression must be avoided. Here, we show that the nuclease can be transferred into cells as a protein associated with a lentiviral vector particle. I-SceI, a prototypic meganuclease from yeast, was incorporated into the virions as a fusion with Vpr, an HIV accessory protein. Integration-deficient lentiviral vectors containing the donor sequences and the I-SceI fusion protein were tested in reporter cells in which targeting events were scored by the repair of a puromycin resistance gene. Molecular analysis of the targeted locus indicated a 2-fold higher frequency of the expected recombination event when the nuclease was delivered as a protein rather than encoded by a separate vector. In both systems, a proportion of clones displayed multiple integrated copies of the donor sequences, either as tandems at the targeted locus or at unrelated loci. These integration patterns were dependent upon the mode of meganuclease delivery, suggesting distinct recombination processes

    Characterization of a new IN-I-PpoI fusion protein and a homology-arm containing transgene cassette that improve transgene expression persistence and 28S rRNA gene-targeted insertion of lentiviral vectors.

    No full text
    Targeting transgene integration into a safe genomic locus would be very important for gene therapy. We have generated lentivirus vectors containing the ribosomal RNA-recognising I-PpoI endonuclease fused to viral integrase, and transgene cassettes with target site homology arms to enhance insertion targeting. These new vectors were characterised with respect to the persistence of transgene expression, insertion targeting efficiency and chromosomal integrity of the transduced cells. The aim was to find an optimally safe and effective vector for human gene therapy. Fusion protein vectors with high endonuclease activity were the most effective in the accurate targeting of transgene insertion. The homology construct increased the insertion targeting efficiency to 28% in MRC-5 cells. However, karyotyping analysis showed that the high endonuclease activity induced the formation of derivative chromosomes in as many as 24% of the analysed primary T lymphocytes. The persistence of transgene expression was excellent in homology arm-containing fusion protein vectors with reduced endonuclease activity, and these fusion proteins did not cause any detectable chromosomal rearrangements attributable to the endonuclease activity. We thus conclude that instead of the fusion protein vectors that carry a highly active endonuclease, our vectors with the ability to tether the lentivirus preintegration complex to benign loci in the genome without high ribosomal DNA cleavage activity are better suited for lentivirus-based gene therapy applications
    corecore