3,220 research outputs found

    It\u2019s a Matter of Mind! Cognitive Functioning Predicts the Athletic Performance in Ultra- Marathon Runners

    Get PDF
    The present study was aimed at exploring the influence of cognitive processes on performance in ultra-marathon runners, providing an overview of the cognitive aspects that characterize outstanding runners. Thirty runners were administered a battery of computerized tests right before their participation in an ultra-marathon. Then, they were split according to the race rank into two groups (i.e., faster runners and slower runners) and their cognitive performance was compared. Faster runners outperformed slower runners in trials requiring motor inhibition and were more effective at performing two tasks together, successfully suppressing the activation of the information for one of the tasks when was not relevant. Furthermore, slower runners took longer to remember to execute pre-defined actions associated with emotional stimuli when such stimuli were presented. These findings suggest that cognitive factors play a key role in running an ultra-marathon. Indeed, if compared with slower runners, faster runners seem to have a better inhibitory control, showing superior ability not only to inhibit motor response but also to suppress processing of irrelevant information. Their cognitive performance also appears to be less influenced by emotional stimuli. This research opens new directions towards understanding which kinds of cognitive and emotional factors can discriminate talented runners from less outstanding runners

    Where Images Make Their Wonder: An Introduction

    Get PDF
    The essay is an introduction to "Image / Images: A Debate between Philosophy and Visual Studies", the third issue of the Journal for the Philosophy of Language, Mind and the Arts. It draws a brief account of how images have been considered by key authors in the framework of both analytic philosophy and visual studies

    A Self-Organized-Criticality model consistent with statistical properties of edge turbulence in a fusion plasma

    Full text link
    The statistical properties of the intermittent signal generated by a recent model for self-organized-criticality (SOC) are examined. A successful comparison is made with previously published results of the equivalent quantities measured in the electrostatic turbulence at the edge of a fusion plasma. This result re-establishes SOC as a potential paradigm for transport in magnetic fusion devices, overriding shortcomings pointed out in earlier works [E. Spada, et al, Phys. Rev. Lett. 86, 3032 (2001); V. Antoni, et al, Phys. Rev. Lett. 87, 045001 (2001)].Comment: 4 pages, 4 figure

    Intentional Binding effect in children: insights from a new paradigm

    Get PDF
    open3Intentional binding (IB) refers to the temporal attraction between a voluntary action and its sensory consequence. Since its discovery in 2002, it has been considered to be a valid implicit measure of sense of agency (SoA), since it only occurs in the context of voluntary actions. The vast majority of studies considering IB have recruited young adults as participants, while neglecting possible age related differences. The aim of the present work is to study the development of IB in 10-year-old children. In place of Libet's classical clock method, we decided to implement a new and more suitable paradigm in order to study IB, since children could have some difficulties in dealing with reading clocks. A stream of unpredictable letters was therefore used participants had to remember which letter was on the screen when they made a voluntary action, heard a sound, or felt their right index finger moved down passively. In Experiment I, a group of young adults was tested in order to replicate the IB effect with this new paradigm. In Experiment II, the same paradigm was then administered to children in order to investigate whether such an effect has already emerged at this age. The data from Experiment I showed the presence of the IB effect in adults. However, Experiment II demonstrated a clear reduction of IB. The comparison of the two groups revealed that the young adult group differed from the children, showing a significantly stronger linkage between actions and their consequences. The results indicate a developmental trend in the IB effect. This finding is discussed in light of the maturation process of the frontal cortical network.restrictedpartially_openCAVAZZANA A; BEGLIOMINI C; BISIACCHI PCavazzana, Annachiara; Begliomini, Chiara; Bisiacchi, Patrizi

    Accurate magnetic sensor system integrated design

    Get PDF
    Inductive measurement of magnetic fields is a diagnostic technique widely used in several scientific fields, such as magnetically confined fusion, plasma thrusters and particle accelerators, where real time control and detailed characterization of physics phenomena are required. The accuracy of the measured data strongly influences the machine controllability and the scientific results. In the framework of the assembly modifications of the RFX-mod experiment, a complete renew and improvement of the magnetic diagnostic system, from the probes moved inside the vacuum vessel to the integrator modules, has been carried out. In this paper, the whole system making up the magnetic diagnostics is described, following the acquisition chain from the probe to the streamed data and illustrating the requirements and conflicting limitations which affect the different components, in order to provide a comprehensive overview useful for an integrated design of any new systems. The characterization of a prototypical implementation of the whole acquisition chain is presented, focusing on the flexible ADC architecture adopted for providing a purely numerical signal integration, highlighting the advantages that this technology offers in terms of flexibility, compactness and cost effectiveness, along with the limitations found in existing implementation in terms of ADC noise characteristics and their possible solutions

    Impedance-Based Stability Analysis in Smart Grids with Large Penetration of Renewable Energy

    Get PDF
    The wide diffusion of distributed energy resources (DERs) has led to a scenario where the penetration of renewables is very high and can significantly affect the grid stability. The increasing complexity of these systems requires a suitable stability approach: the impedance-based analysis has one of its main advantages in the possibility to characterize the components separately, e.g. source and load, and to estimate the stability at a certain interface applying the Nyquist criterion to the impedance ratio. This method has been widely used in DC systems, to investigate the converters interactions and anticipating the stability of the final scenario also in case of multiple paralleled converters, often using criteria to limit the interactions and guarantee a stable configuration. Then, the method has been extended to three-phase system, where the multi-input multi-output configuration needs the generalized Nyquist criterion (GNC) for the stability assessment. The first case presented in this work is a grid-connected large photovoltaic (PV) farm, where the inverter control is provided in abc-frame, and considering a balanced and symmetrical system the equivalent single-phase inverter is used in this analysis. The stability is addressed according to the aforementioned impedance-based approach, including also the equivalent generator contributions. The impedance multiplication effect is here formalized also for the case of different parallel inverters. The influence of the line impedance and of the power rating of the inverter are considered. The outcome of the study is an approach featuring both accurate stability analysis, as in multi-input multi-output based approaches, and modularity, as in impedance-based approaches. Moreover, the grid sensitivity is investigated for the case of multiple paralleled inverters, in order to analyze how it changes with an increasing number of connections. Recently, the interest on the hybrid-grids with diesel generators and battery energy storage systems (BESSs) are gaining higher attention because nearly one in five people in the world live without access to electricity. This off-grid solution is then able to provide a continuous generation and also integrate the renewables in the same system. The second part focuses on the modeling of a three-phase hybrid-grid, where the diesel generator is controlled in isochronous mode, and the inverters interfacing the BESSs are droop-controlled with an additional external loop to provide the exact tracking of the power references when the generator is connected. The experimental results of a system with a 400kVA diesel generator and up to 300kVA coming from the BESSs are included. The analysis has led to the full reproduction of the interaction between the diesel generator and an increasing number of connected inverters, where the total inertia of the system changes. However, in literature there is no stability analysis accurate enough to analyze such a complex system and predict instabilities. The modularity of the impedance-based stability analysis can then provide a subdivision of this complexity, and so represents a suitable approach. In this work, the output impedance of a droop-controlled inverter is determined, in order to characterize this element widely used in off-grid applications. After determining the operating point, the analytical model of the output impedance is derived in both controller and system frame, including the effect of the decoupling impedance and the inverter inner dynamics. Finally, this work presents a mathematical tool to convert impedance between different dq-frames. The application of this conversion tool to the aforementioned droop-controlled inverter case will be provided, in order to prove the correctness of the transformation
    • …
    corecore