162 research outputs found

    Analysis Methods of Errors (Motion and Atmospheric) in Synthetic Aperture Radar (SAR) Images

    Get PDF
    A method to allow the analysis of the effects of motion and atmospheric errors in SAR images is here presented. The objective of the method is to allow the visualization of the effects of motion errors and atmospheric artefacts on the processed (focused) SAR image. The method is intended to allow the analysis of the interaction of motion and atmospheric errors with the adopted SAR processing procedure and motion compensation algorithms. In this article the analysis method has been applied and tested to a C-Band E-SAR (DLR airborne SAR system) data set where we see that the effects of linear and non-linear phase errors observed are in agreement with the theory

    The brittle evolution of Western Norway – A space-time model based on fault mineralizations, K–Ar fault gouge dating and paleostress analysis

    Get PDF
    Basement fracture and fault patterns on passive continental margins control the onshore landscape and offshore distribution of sediment packages and fluid pathways. In this study, we decipher the spatial-temporal evolution of brittle faults and fractures in the northern section of the passive margin of Western Norway by combining field observations of fault mineralizations and K–Ar fault gouge dating with different paleostress approaches, resulting in the following model: (1) High-T fault mineralizations indicate Silurian NW-SE compression followed by NW-SE extension in the Early to Mid-Devonian. (2) Epidote, chlorite and quartz fault mineralizations indicate a dominant strike-slip stress field in the Late Devonian to early Carboniferous. (3) E-W extensional stress fields which could be related to Permo-Triassic or Late Jurassic rifting are not prominent in our data set. (4) K–Ar fault gouge ages indicate two extensive faulting events under a WNW-ESE transtensional stress regime with related precipitation of zeolite and calcite in the mid (123-115 Ma) and late (86-77 Ma) Cretaceous. Our results show that the brittle architecture of the study area is dominated by reactivation of ductile precursors and newly formed strike-slip faults, which is different from the dip-slip dominated brittle architecture of the southern section of the West Norway margin.publishedVersio

    Constraining the tectonic evolution of rifted continental margins by U–Pb calcite dating

    Get PDF
    We employ U–Pb calcite dating of structurally-controlled fracture fills within crystalline Caledonian basement in western Norway to reveal subtle large-scale tectonic events that affected this rifted continental margin. The ages (15 in total) fall into four distinct groups with ages mainly ranging from latest Cretaceous to Pleistocene. (1) The three oldest (Triassic-Jurassic) ages refine the complex faulting history of a reactivated fault strand originated from the Caledonian collapse and broadly correlate with known rifting events offshore. (2) Two ages of ca. 90–80 Ma relate to lithospheric stretching and normal fault reactivation of a major ENE-WSW trending late Caledonian shear zone. (3) We correlate five ages between ca. 70 and 60 Ma with far-field effects and dynamic uplift related to the proto-Iceland mantle plume, the effect and extent of which is highly debated. (4) The five youngest ages (< 50 Ma) from distinct NE–SW trending faults are interpreted to represent several episodes of post-breakup fracture dilation, indicating a long-lived Cenozoic deformation history. Our new U–Pb data combined with structural and isotopic data show that much larger tracts of the uplifted continental margin of western Norway have been affected by far-field tectonic stresses than previously anticipated, with deformation continuing into the late Cenozoic.publishedVersio

    Phosphonate Chelators for Medicinal Metal Ions

    Get PDF
    A family of phosphonate-bearing chelators was synthesized to study their potential in metal-based (radio)- pharmaceuticals. Three ligands (H6phospa, H6dipedpa, H6eppy; structures illustrated in manuscript) were fully characterized, including X-ray crystallographic structures of H6phospa and H6dipedpa. NMR spectroscopy techniques were used to confirm the complexation of each ligand with selected trivalent metal ions. These methods were particularly useful in discerning structural information for Sc3+ and La3+ complexes. Solution studies were conducted to evaluate the complex stability of 15 metal complexes. As a general trend, H6phospa was noted to form the most stable complexes, and H6eppy associated with the least stable complexes. Moreover, In3+ complexes were determined to be the most stable, and complexes with La3+ were the least stable, across all metals. Density functional theory (DFT) was employed to calculate structures of H6phospa and H6dipedpa complexes with La3+ and Sc3+. A comparison of experimental 1 H NMR spectra with calculated 1 H NMR spectra using DFT-optimized structures was used as a method of structure validation. It was noted that theoretical NMR spectra were very sensitive to a number of variables, such as ligand configuration, protonation state, and the number/orientation of explicit water molecules. In general, the inclusion of an explicit second shell of water molecules qualitatively improved the agreement between theoretical and experimental NMR spectra versus a polarizable continuum solvent model alone. Formation constants were also calculated from DFT results using potential-energy optimized structures. Strong dependence of molecular free energies on explicit water molecule number, water molecule configuration, and protonation state was observed, highlighting the need for dynamic data in accurate first-principles calculations of metal−ligand stability constants

    Rapid post-glacial bedrock weathering in coastal Norway

    Get PDF
    Quantifying bedrock weathering rates under diverse climate conditions is essential to understanding timescales of landscape evolution. Yet, weathering rates are often difficult to constrain, and associating a weathered landform to a specific formative environment can be complicated by overprinting of successive processes and temporally varying climate. In this study, we investigate three sites between 59°N and 69°N along the Norwegian coast that display grussic saprolite, tafoni, and linear weathering grooves on diverse lithologies. These weathering phenomena have been invoked as examples of geomorphic archives predating Quaternary glaciations and consequently as indicators of minimal glacial erosion. Here we apply cosmogenic nuclide chronometry to assess the recent erosional history. Our results demonstrate that all three sites experienced sufficient erosion to remove most cosmogenic nuclides formed prior to the Last Glacial Maximum. This finding is inconsistent with preservation of surficial (<1–2 m) weathered landforms under non-erosive ice during the last glacial period, while simultaneously demonstrating that post-glacial weathering and erosion rates can be locally rapid (4–10 cm kyr−1) in cold temperate to subarctic coastal locations

    Effects of Methoxyisoflavone, Ecdysterone, and Sulfo-Polysaccharide Supplementation on Training Adaptations in Resistance-Trained Males

    Get PDF
    PURPOSE: Methoxyisoflavone (M), 20-hydroxyecdysone (E), and sulfo-polysaccharide (CSP3) have been marketed to athletes as dietary supplements that can increase strength and muscle mass during resistancetraining. However, little is known about their potential ergogenic value. The purpose of this study was to determine whether these supplements affect training adaptations and/or markers of muscle anabolism/catabolism in resistance-trained athletes. METHODS: Forty-five resistance-trained males (20.5±3 yrs; 179±7 cm, 84±16 kg, 17.3±9 % body fat) were matched according to FFM and randomly assigned to ingest in a double blind manner supplements containing either a placebo (P); 800 mg/day of M; 200 mg of E; or, 1,000 mg/day of CSP3 for 8-weeks during training. At 0, 4, and 8-weeks, subjects donated fasting blood samples and completed comprehensive muscular strength, muscular endurance, anaerobic capacity, and body composition analysis. Data were analyzed by repeated measures ANOVA. RESULTS: No significant differences (p&gt;0.05) were observed in training adaptations among groups in the variables FFM, percent body fat, bench press 1RM, leg press 1RM or sprint peak power. Anabolic/catabolic analysis revealed no significant differences among groups in active testosterone (AT), free testosterone (FT), cortisol, the AT to cortisol ratio, urea nitrogen, creatinine, the blood urea nitrogen to creatinine ratio. In addition, no significant differences were seen from pr

    Entangled Stories: The Red Jews in Premodern Yiddish and German Apocalyptic Lore

    Get PDF
    “Far, far away from our areas, somewhere beyond the Mountains of Darkness, on the other side of the Sambatyon River…there lives a nation known as the Red Jews.” The Red Jews are best known from classic Yiddish writing, most notably from Mendele's Kitser masoes Binyomin hashlishi (The Brief Travels of Benjamin the Third). This novel, first published in 1878, represents the initial appearance of the Red Jews in modern Yiddish literature. This comical travelogue describes the adventures of Benjamin, who sets off in search of the legendary Red Jews. But who are these Red Jews or, in Yiddish, di royte yidelekh? The term denotes the Ten Lost Tribes of Israel, the ten tribes that in biblical times had composed the Northern Kingdom of Israel until they were exiled by the Assyrians in the eighth century BCE. Over time, the myth of their return emerged, and they were said to live in an uncharted location beyond the mysterious Sambatyon River, where they would remain until the Messiah's arrival at the end of time, when they would rejoin the rest of the Jewish people. This article is part of a broader study of the Red Jews in Jewish popular culture from the Middle Ages through modernity. It is partially based on a chapter from my book, Umstrittene Erlöser: Politik, Ideologie und jüdisch-christlicher Messianismus in Deutschland, 1500–1600 (Göttingen: Vandenhoeck & Ruprecht, 2011). Several postdoctoral fellowships have generously supported my research on the Red Jews: a Dr. Meyer-Struckmann-Fellowship of the German Academic Foundation, a Harry Starr Fellowship in Judaica/Alan M. Stroock Fellowship for Advanced Research in Judaica at Harvard University, a research fellowship from the Heinrich Hertz-Foundation, and a YIVO Dina Abramowicz Emerging Scholar Fellowship. I thank the organizers of and participants in the colloquia and conferences where I have presented this material in various forms as well as the editors and anonymous reviewers of AJS Review for their valuable comments and suggestions. I am especially grateful to Jeremy Dauber and Elisheva Carlebach of the Institute for Israel and Jewish Studies at Columbia University, where I was a Visiting Scholar in the fall of 2009, for their generous encouragement to write this article. Sue Oren considerably improved my English. The style employed for Romanization of Yiddish follows YIVO's transliteration standards. Unless otherwise noted, translations from the Yiddish, Hebrew, German, and Latin are my own. Quotations from the Bible follow the JPS translation, and those from the Babylonian Talmud are according to the Hebrew-English edition of the Soncino Talmud by Isidore Epstein

    A Structure-Based Approach for Mapping Adverse Drug Reactions to the Perturbation of Underlying Biological Pathways

    Get PDF
    Adverse drug reactions (ADR), also known as side-effects, are complex undesired physiologic phenomena observed secondary to the administration of pharmaceuticals. Several phenomena underlie the emergence of each ADR; however, a dominant factor is the drug's ability to modulate one or more biological pathways. Understanding the biological processes behind the occurrence of ADRs would lead to the development of safer and more effective drugs. At present, no method exists to discover these ADR-pathway associations. In this paper we introduce a computational framework for identifying a subset of these associations based on the assumption that drugs capable of modulating the same pathway may induce similar ADRs. Our model exploits multiple information resources. First, we utilize a publicly available dataset pairing drugs with their observed ADRs. Second, we identify putative protein targets for each drug using the protein structure database and in-silico virtual docking. Third, we label each protein target with its known involvement in one or more biological pathways. Finally, the relationships among these information sources are mined using multiple stages of logistic-regression while controlling for over-fitting and multiple-hypothesis testing. As proof-of-concept, we examined a dataset of 506 ADRs, 730 drugs, and 830 human protein targets. Our method yielded 185 ADR-pathway associations of which 45 were selected to undergo a manual literature review. We found 32 associations to be supported by the scientific literature
    corecore