30 research outputs found

    When Will the Antarctic Ozone Hole Recover?

    Get PDF
    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole

    Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H_2

    Get PDF
    Molecular hydrogen (H_2) is the second most abundant trace gas in the atmosphere after methane (CH_4). In the troposphere, the D/H ratio of H_2 is enriched by 120‰ relative to the world's oceans. This cannot be explained by the sources of H_2 for which the D/H ratio has been measured to date (for example, fossil fuels and biomass burning). But the isotopic composition of H_2 from its single largest source—the photochemical oxidation of methane—has yet to be determined. Here we show that the D/H ratio of stratospheric H2 develops enrichments greater than 440‰, the most extreme D/H enrichment observed in a terrestrial material. We estimate the D/H ratio of H_2 produced from CH_4 in the stratosphere, where production is isolated from the influences of non-photochemical sources and sinks, showing that the chain of reactions producing H_2 from CH_4 concentrates D in the product H_2. This enrichment, which we estimate is similar on a global average in the troposphere, contributes substantially to the D/H ratio of tropospheric H_2

    Large and unexpected enrichment in stratospheric ^(16)O^(13)C^(18)O and its meridional variation

    Get PDF
    The stratospheric CO_2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO_2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO_2 isotopologue ^(16)O^(13)C^(18)O, in concert with ^(18)O and ^(17)O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO_2 sample to date. We show, through photochemical experiments, that lower ^(16)O^(13)C^(18)O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO_2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher ^(16)O^(13)C^(18)O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO_2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO_2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric ^(16)O^(13)C^(18)O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change

    CAM6-chem with very short-lived halogen chemistry: evaluation with the whole air sampler aircraft data from multiple seasons and locations

    Get PDF
    A new version of the Community Atmosphere Model with chemistry (CAM6-chem) has recently been released to the atmospheric science community (June 2018). CAM6-chem has updated boundary layer processes, shallow convection and liquid cloud macrophysics, and two-moment cloud microphysics with prognostic cloud mass andconcentration. A 4-mode prognostic aerosol representation (MAM4) has been added that includes a representation of dust, sea-salt black carbon, organic carbon, and sulfate in three size categories (Gettelman et al., 2019). CAM6-Chem has a detailed representation of both tropospheric and stratospheric chemistry. The tropospheric chemistry includes updates to the representation the organic nitrates, isoprene oxidization, and the speciation of the aromaticand terpenes (Emmons et al., 2019). This mechanism also includes a comprehensive secondary organic aerosol parameterization based on the Volatility Basic Set (VBS) model framework (Hodzic et al. 2016; Tilmes et al., 2019). The stratospheric halogen chemistry represents the distribution of CH3Cl, CFCs, HCFCs, CH3Br, and halons (Kinnison et al., 2007). For this study, the emissions, wet and dry depositions, and chemical processes that represent Very Short-Lived Halogens (VSLH) were added (e.g., Saiz-Lopez et al., 2016). Evaluation of the organic VSLH distributions are to compare with trace gas measurements collected during seven field campaigns, two withmultiple deployments, to evaluate the model performance over multiple years. The campaigns include HIPPO (2009-2011) pole to pole observations in the Pacific on the NSF/NCAR GV over multiple seasons; SEAC4RS (Aug./Sept., 2013) in the central and southern U.S. and western Gulf of Mexico on the NASA ER-2 and DC8; ATTREX (2011-2015) on the NASA Global Hawk over multiple seasons and locations; CONTRAST (Jan/Feb, 2014) in the western Pacific on the NSF/NCAR GV; VIRGAS (Oct., 2015) in the south central US and western Gulf of Mexico on the NASA WB-57; ORCAS (Jan/Feb, 2016) over the southern ocean on the NSF/NCAR GV; and POSIDON (Oct, 2016) in the western Pacific on the NASA WB-57. The model was ?nudged? to NASA Modern-Era Retrospective analysis for Research and Applications, version 2 meteorological fields to represent the synoptic meteorology for each mission. The analysis will focus on along the flight tracks comparisons with the model and will also examine comparisons of vertical distributions and various tracer-tracer correlations. Implications of this new model version on estimated input of inorganic bromine and iodine into the lower stratosphere will be discussed.Fil: Kinnisson, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física "Rocasolano"; EspañaFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas. Instituto de Química Física "Rocasolano"; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados UnidosFil: Tilmes, Simone. National Center for Atmospheric Research; Estados UnidosFil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados UnidosFil: Hodzic, Alma. National Center for Atmospheric Research; Estados UnidosFil: Wang, Siyuan. National Center for Atmospheric Research; Estados UnidosFil: Schauffler, Sue M.. National Center for Atmospheric Research; Estados UnidosFil: Navarro, María. University Of Miami. Rosenstiel School Of Marine Atmospheric Science; Estados UnidosFil: Atlas, Elliot. University Of Miami. Rosenstiel School Of Marine Atmospheric Science; Estados UnidosEGU General Assembly 2019VienaAustriaEuropean Geociences Unio

    Isotopic ordering in atmospheric O2 as a tracer of ozone photochemistry and the tropical atmosphere

    Get PDF
    The distribution of isotopes within O2 molecules can be rapidly altered when they react with atomic oxygen. This mechanism is globally important: while other contributions to the global budget of O2 impart isotopic signatures, the O(3P) + O2 reaction resets all such signatures in the atmosphere on subdecadal timescales. Consequently, the isotopic distribution within O2 is determined by O3 photochemistry and the circulation patterns that control where that photochemistry occurs. The variability of isotopic ordering in O2 has not been established, however. We present new measurements of 18O18O in air (reported as Δ36 values) from the surface to 33 km altitude. They confirm the basic features of the clumped-isotope budget of O2: Stratospheric air has higher Δ36 values than tropospheric air (i.e., more 18O18O), reflecting colder temperatures and fast photochemical cycling of O3. Lower Δ36 values in the troposphere arise from photochemistry at warmer temperatures balanced by the influx of high-Δ36 air from the stratosphere. These observations agree with predictions derived from the GEOS-Chem chemical transport model, which provides additional insight. We find a link between tropical circulation patterns and regions where Δ36 values are reset in the troposphere. The dynamics of these regions influences lapse rates, vertical and horizontal patterns of O2 reordering, and thus the isotopic distribution toward which O2 is driven in the troposphere. Temporal variations in Δ36 values at the surface should therefore reflect changes in tropospheric temperatures, photochemistry, and circulation. Our results suggest that the tropospheric O3 burden has remained within a ±10% range since 1978

    Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002

    Get PDF
    Regional modeling analysis for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment over the eastern Pacific and U.S. West Coast is performed using a multiscale modeling system, including the regional tracer model Chemical Weather Forecasting System (CFORS), the Sulfur Transport and Emissions Model 2003 (STEM-2K3) regional chemical transport model, and an off-line coupling with the Model of Ozone and Related Chemical Tracers (MOZART) global chemical transport model. CO regional tracers calculated online in the CFORS model are used to identify aircraft measurement periods with Asian influences. Asian-influenced air masses measured by the National Oceanic and Atmospheric Administration (NOAA) WP-3 aircraft in this experiment are found to have lower ΔAcetone/ΔCO, ΔMethanol /ΔCO, and ΔPropane/ ΔEthyne ratios than air masses influenced by U.S. emissions, reflecting differences in regional emission signals. The Asian air masses in the eastern Pacific are found to usually be well aged (\u3e5 days), to be highly diffused, and to have low NOy levels. Chemical budget analysis is performed for two flights, and the O3 net chemical budgets are found to be negative (net destructive) in the places dominated by Asian influences or clear sites and positive in polluted American air masses. During the trans-Pacific transport, part of gaseous HNO3 was converted to nitrate particle, and this conversion was attributed to NOy decline. Without the aerosol consideration, the model tends to overestimate HNO3 background concentration along the coast region. At the measurement site of Trinidad Head, northern California, high- concentration pollutants are usually associated with calm wind scenarios, implying that the accumulation of local pollutants leads to the high concentration. Seasonal variations are also discussed from April to May for this site. A high-resolution nesting simulation with 12-km horizontal resolution is used to study the WP-3 flight over Los Angeles and surrounding areas. This nested simulation significantly improved the predictions for emitted and secondary generated species. The difference of photochemical behavior between the coarse (60-km) and nesting simulations is discussed and compared with the observation. Copyright 2004 by the American Geophysical Union

    A synthesis inversion to constrain global emissions of very short‐lived chlorocarbons, dichloromethane and perchloroethylene : dichloromethane, and perchloroethylene

    Get PDF
    Dichloromethane (CH2Cl2) and perchloroethylene (C2Cl4) are chlorinated very short lived substances (Cl-VSLS) with anthropogenic sources. Recent studies highlight the increasing influence of such compounds, particularly CH2Cl2, on the stratospheric chlorine budget and therefore on ozone depletion. Here, a multiyear global-scale synthesis inversion was performed to optimize CH2Cl2 (2006–2017) and C2Cl4 (2007–2017) emissions. The approach combines long-term surface observations from global monitoring networks, output from a three-dimensional chemical transport model (TOMCAT), and novel bottom-up information on prior industry emissions. Our posterior results show an increase in global CH2Cl2 emissions from 637 ± 36 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 in 2017, with Asian emissions accounting for 68% and 89% of these totals, respectively. In absolute terms, Asian CH2Cl2 emissions increased annually by 51 Gg yr−1 over the study period, while European and North American emissions declined, indicating a continental-scale shift in emission distribution since the mid-2000s. For C2Cl4, we estimate a decrease in global emissions from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. The time-varying posterior emissions offer significant improvements over the prior. Utilizing the posterior emissions leads to modeled tropospheric CH2Cl2 and C2Cl4 abundances and trends in good agreement to those observed (including independent observations to the inversion). A shorter C2Cl4 lifetime, from including an uncertain Cl sink, leads to larger global C2Cl4 emissions by a factor of ~1.5, which in some places improves model-measurement agreement. The sensitivity of our findings to assumptions in the inversion procedure, including CH2Cl2 oceanic emissions, is discussed

    Stratospheric Injection of Brominated Very Short‐Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models

    Get PDF
    We quantify the stratospheric injection of brominated very short‐lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC‐11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry‐Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer‐lived chemicals as a surrogate for VSLS
    corecore