532 research outputs found
Improving the robustness to input errors on touch-based self-service kiosks and transportation apps
acceptedVersio
Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees
The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe
Recommended from our members
Active animal health surveillance in European Union Member States: gaps and opportunities
Animal health surveillance enables the detection and control of animal diseases including zoonoses. Under the EU-FP7 project RISKSUR, a survey was conducted in 11 EU Member States and Switzerland to describe active surveillance components in 2011 managed by the public or private sector and identify gaps and opportunities. Information was collected about hazard, target population, geographical focus, legal obligation, management, surveillance design, risk-based sampling, and multi-hazard surveillance. Two countries were excluded due to incompleteness of data. Most of the 664 components targeted cattle (26·7%), pigs (17·5%) or poultry (16·0%). The most common surveillance objectives were demonstrating freedom from disease (43·8%) and case detection (26·8%). Over half of components applied risk-based sampling (57·1%), but mainly focused on a single population stratum (targeted risk-based) rather than differentiating between risk levels of different strata (stratified risk-based). About a third of components were multi-hazard (37·3%). Both risk-based sampling and multi-hazard surveillance were used more frequently in privately funded components. The study identified several gaps (e.g. lack of systematic documentation, inconsistent application of terminology) and opportunities (e.g. stratified risk-based sampling). The greater flexibility provided by the new EU Animal Health Law means that systematic evaluation of surveillance alternatives will be required to optimize cost-effectiveness
Development of Reporting Guidelines for Animal Health Surveillance—AHSURED
With the current trend in animal health surveillance toward risk-based designs and a gradual transition to output-based standards, greater flexibility in surveillance design is both required and allowed. However, the increase in flexibility requires more transparency regarding surveillance, its activities, design and implementation. Such transparency allows stakeholders, trade partners, decision-makers and risk assessors to accurately interpret the validity of the surveillance outcomes. This paper presents the first version of the Animal Health Surveillance Reporting Guidelines (AHSURED) and the process by which they have been developed. The goal of AHSURED was to produce a set of reporting guidelines that supports communication of surveillance activities in the form of narrative descriptions. Reporting guidelines come from the field of evidence-based medicine and their aim is to improve consistency and quality of information reported in scientific journals. They usually consist of a checklist of items to be reported, a description/definition of each item, and an explanation and elaboration document. Examples of well-reported items are frequently provided. Additionally, it is common to make available a website where the guidelines are documented and maintained. This first version of the AHSURED guidelines consists of a checklist of 40 items organized in 11 sections (i.e., surveillance system building blocks), which is available as a wiki at https://github.com/SVA-SE/AHSURED/wiki. The choice of a wiki format will allow for further inputs from surveillance experts who were not involved in the earlier stages of development. This will promote an up-to-date refined guideline document
IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium
<p>Abstract</p> <p>Background</p> <p>Hospital strains of <it>Enterococcus faecium </it>could be characterized and typed by various molecular methods (MLST, AFLP, MLVA) and allocated to a distinct clonal complex known as MLST CC17. However, these techniques are laborious, time-consuming and cost-intensive. Our aim was to identify hospital <it>E. faecium </it>strains and differentiate them from colonizing and animal variants by a simple, inexpensive and reliable PCR-based screening assay. We describe here performance and predictive value of a single PCR detecting the insertion element, IS<it>16</it>, to identify hospital <it>E. faecium </it>isolates within a collection of 260 strains of hospital, animal and human commensal origins.</p> <p>Methods</p> <p>Specific primers were selected amplifying a 547-bp fragment of IS<it>16</it>. Presence of IS<it>16 </it>was determined by PCR screenings among the 260 <it>E. faecium </it>isolates. Distribution of IS<it>16 </it>was compared with a prevalence of commonly used markers for hospital strains, <it>esp </it>and <it>hyl</it><sub><it>Efm</it></sub>. All isolates were typed by MLST and partly by PFGE. Location of IS<it>16 </it>was analysed by Southern hybridization of plasmid and chromosomal DNA.</p> <p>Results</p> <p>IS<it>16 </it>was exclusively distributed only among 155 invasive strains belonging to the clonal complex of hospital-associated strains ("CC17"; 28 MLST types) and various vancomycin resistance genotypes (<it>van</it>A/B/negative). The five invasive IS<it>16</it>-negative strains did not belong to the clonal complex of hospital-associated strains (CC17). IS<it>16 </it>was absent in all but three isolates from 100 livestock, food-associated and human commensal strains ("non-CC17"; 64 MLST types). The three IS<it>16</it>-positive human commensal isolates revealed MLST types belonging to the clonal complex of hospital-associated strains (CC17). The values predicting a hospital-associated strain ("CC17") deduced from presence and absence of IS<it>16 </it>was 100% and thus superior to screening for the presence of <it>esp </it>(66%) and/or <it>hyl</it><sub><it>Efm </it></sub>(46%). Southern hybridizations revealed chromosomal as well as plasmid localization of IS<it>16</it>.</p> <p>Conclusions</p> <p>This simple screening assay for insertion element IS<it>16 </it>is capable of differentiating hospital-associated from human commensal, livestock- and food-associated <it>E. faecium </it>strains and thus allows predicting the epidemic strengths or supposed pathogenic potential of a given <it>E. faecium </it>isolate identified within the nosocomial setting.</p
IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium
<p>Abstract</p> <p>Background</p> <p>Hospital strains of <it>Enterococcus faecium </it>could be characterized and typed by various molecular methods (MLST, AFLP, MLVA) and allocated to a distinct clonal complex known as MLST CC17. However, these techniques are laborious, time-consuming and cost-intensive. Our aim was to identify hospital <it>E. faecium </it>strains and differentiate them from colonizing and animal variants by a simple, inexpensive and reliable PCR-based screening assay. We describe here performance and predictive value of a single PCR detecting the insertion element, IS<it>16</it>, to identify hospital <it>E. faecium </it>isolates within a collection of 260 strains of hospital, animal and human commensal origins.</p> <p>Methods</p> <p>Specific primers were selected amplifying a 547-bp fragment of IS<it>16</it>. Presence of IS<it>16 </it>was determined by PCR screenings among the 260 <it>E. faecium </it>isolates. Distribution of IS<it>16 </it>was compared with a prevalence of commonly used markers for hospital strains, <it>esp </it>and <it>hyl</it><sub><it>Efm</it></sub>. All isolates were typed by MLST and partly by PFGE. Location of IS<it>16 </it>was analysed by Southern hybridization of plasmid and chromosomal DNA.</p> <p>Results</p> <p>IS<it>16 </it>was exclusively distributed only among 155 invasive strains belonging to the clonal complex of hospital-associated strains ("CC17"; 28 MLST types) and various vancomycin resistance genotypes (<it>van</it>A/B/negative). The five invasive IS<it>16</it>-negative strains did not belong to the clonal complex of hospital-associated strains (CC17). IS<it>16 </it>was absent in all but three isolates from 100 livestock, food-associated and human commensal strains ("non-CC17"; 64 MLST types). The three IS<it>16</it>-positive human commensal isolates revealed MLST types belonging to the clonal complex of hospital-associated strains (CC17). The values predicting a hospital-associated strain ("CC17") deduced from presence and absence of IS<it>16 </it>was 100% and thus superior to screening for the presence of <it>esp </it>(66%) and/or <it>hyl</it><sub><it>Efm </it></sub>(46%). Southern hybridizations revealed chromosomal as well as plasmid localization of IS<it>16</it>.</p> <p>Conclusions</p> <p>This simple screening assay for insertion element IS<it>16 </it>is capable of differentiating hospital-associated from human commensal, livestock- and food-associated <it>E. faecium </it>strains and thus allows predicting the epidemic strengths or supposed pathogenic potential of a given <it>E. faecium </it>isolate identified within the nosocomial setting.</p
Modelling ranging behaviour of female orang-utans: a case study in Tuanan, Central Kalimantan, Indonesia
Quantification of the spatial needs of individuals and populations is vitally important for management and conservation. Geographic information systems (GIS) have recently become important analytical tools in wildlife biology, improving our ability to understand animal movement patterns, especially when very large data sets are collected. This study aims at combining the field of GIS with primatology to model and analyse space-use patterns of wild orang-utans. Home ranges of female orang-utans in the Tuanan Mawas forest reserve in Central Kalimantan, Indonesia were modelled with kernel density estimation methods. Kernel results were compared with minimum convex polygon estimates, and were found to perform better, because they were less sensitive to sample size and produced more reliable estimates. Furthermore, daily travel paths were calculated from 970 complete follow days. Annual ranges for the resident females were approximately 200 ha and remained stable over several years; total home range size was estimated to be 275 ha. On average, each female shared a third of her home range with each neighbouring female. Orang-utan females in Tuanan built their night nest on average 414 m away from the morning nest, whereas average daily travel path length was 777 m. A significant effect of fruit availability on day path length was found. Sexually active females covered longer distances per day and may also temporarily expand their ranges
A FAIR guide for data providers to maximise sharing of human genomic data
It is generally acknowledged that, for reproducibility and progress of human genomic research, data sharing is critical. For every sharing transaction, a successful data exchange is produced between a data consumer and a data provider. Providers of human genomic data (e.g., publicly or privately funded repositories and data archives) fulfil their social contract with data donors when their shareable data conforms to FAIR (findable, accessible, interoperable, reusable) principles. Based on our experiences via Repositive (https://repositive.io), a leading discovery platform cataloguing all shared human genomic datasets, we propose guidelines for data providers wishing to maximise their shared data’s FAIRness.
Citation: Corpas M, Kovalevskaya NV, McMurray A, Niel
Patients with Endoscopically Visible Polypoid Adenomatous Lesions Within the Extent of Ulcerative Colitis Have an Increased Risk of Colorectal Cancer Despite Endoscopic Resection.
OBJECTIVES: Ulcerative colitis (UC) is associated with an increased risk of colorectal cancer (CRC). Few studies have looked at long-term outcomes of endoscopically visible adenomatous lesions removed by endoscopic resection in these patients. We aimed to assess the risk of developing CRC in UC patients with adenomatous lesions that develop within the segment of colitis compared to the remainder of an ulcerative colitis cohort. METHODS: We identified patients with a confirmed histological diagnosis of UC from 1991 to 2004 and noted outcomes till June 2011. The Kaplan-Meier method was used to estimate cumulative probability of subsequent CRC. Factors associated with risk of CRC were assessed in a Cox proportional hazards model. RESULTS: Twenty-nine of 301 patients with UC had adenomatous lesions noted within the segment of colitis. The crude incidence rate of developing colon cancer in patients with UC was 2.45 (95 % CI 1.06-4.83) per 1000 PYD and in those with UC and polypoid adenomas within the extent of inflammation was 11.07 (95 % CI 3.59-25.83) per 1000 PYD. Adjusted hazards ratio of developing CRC on follow-up in UC patients with polypoid dysplastic adenomatous lesions within the extent of inflammation was 4.0 (95 % CI 1.3-12.4). CONCLUSIONS: The risk of developing CRC is significantly higher in UC patients with polypoid adenomatous lesions, within the extent of inflammation, despite endoscopic resection. Patients and physicians should take the increased risk into consideration during follow-up of these patients
- …