7 research outputs found

    The norovirus NS3 protein is a dynamic lipid- and microtubule-associated protein involved in viral RNA replication

    Get PDF
    Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker β-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups

    Nlrp3 inflammasome activation and Gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection.

    Get PDF
    Norovirus infection is the leading cause of food-borne gastroenteritis worldwide, being responsible for over 200,000 deaths annually. Studies with murine norovirus (MNV) showed that protective STAT1 signaling controls viral replication and pathogenesis, but the immune mechanisms that noroviruses exploit to induce pathology are elusive. Here, we show that gastrointestinal MNV infection leads to widespread IL-1β maturation in MNV-susceptible STAT1-deficient mice. MNV activates the canonical Nlrp3 inflammasome in macrophages, leading to maturation of IL-1β and to Gasdermin D (GSDMD)-dependent pyroptosis. STAT1-deficient macrophages displayed increased MAVS-mediated expression of pro-IL-1β, facilitating elevated Nlrp3-dependent release of mature IL-1β upon MNV infection. Accordingly, MNV-infected Stat1-/- mice showed Nlrp3-dependent maturation of IL-1β as well as Nlrp3-dependent pyroptosis as assessed by in vivo cleavage of GSDMD to its active N-terminal fragment. While MNV-induced diarrheic responses were not affected, Stat1-/- mice additionally lacking either Nlrp3 or GSDMD displayed lower levels of the fecal inflammatory marker Lipocalin-2 as well as delayed lethality after gastrointestinal MNV infection. Together, these results uncover new insights into the mechanisms of norovirus-induced inflammation and cell death, thereby revealing Nlrp3 inflammasome activation and ensuing GSDMD-driven pyroptosis as contributors to MNV-induced immunopathology in susceptible STAT1-deficient mice.Wellcome Trust BBSR

    Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors

    Get PDF
    Anti-microRNA (miRNA) oligonucleotides (AMOs) with 2\u27-O-Methyl (2\u27OMe) residues are commonly used to study miRNA function and can achieve high potency, with low cytotoxicity. Not withstanding this, we demonstrate the sequence-dependent capacity of 2\u27OMe AMOs to inhibit Toll-like receptor (TLR) 7 and 8 sensing of immunostimulatory RNA, independent of their miRNA-targeting function. Through a screen of 29 AMOs targeting common miRNAs, we found a subset of sequences highly inhibitory to TLR7 sensing in mouse macrophages. Interspecies conservation of this inhibitory activity was confirmed on TLR7/8 activity in human peripheral blood mononuclear cells. Significantly, we identified a core motif governing the inhibitory activity of these AMOs, which is present in more than 50 AMOs targeted to human miRNAs in miRBaseV20. DNA/locked nucleic acids (LNA) AMOs synthesized with a phosphorothioate backbone also inhibited TLR7 sensing in a sequence-dependent manner, demonstrating that the off-target effects of AMOs are not restricted to 2\u27OMe modification. Taken together, our work establishes the potential for off-target effects of AMOs on TLR7/8 function, which should be taken into account in their therapeutic development and in vivo application
    corecore