180 research outputs found

    Leaf Eh and pH: A Novel Indicator of Plant Stress. Spatial, Temporal and Genotypic Variability in Rice (Oryza sativa L.)

    Get PDF
    A wealth of knowledge has been published in the last decade on redox regulations in plants. However, these works remained largely at cellular and organelle levels. Simple indicators of oxidative stress at the plant level are still missing. We developed a method for direct measurement of leaf Eh and pH, which revealed spatial, temporal, and genotypic variations in rice. Eh (redox potential) and Eh@pH7 (redox potential corrected to pH 7) of the last fully expanded leaf decreased after sunrise. Leaf Eh was high in the youngest leaf and in the oldest leaves, and minimum for the last fully expanded leaf. Leaf pH decreased from youngest to oldest leaves. The same gradients in Eh-pH were measured for various varieties, hydric conditions, and cropping seasons. Rice varieties differed in Eh, pH, and/or Eh@pH7. Leaf Eh increases and leaf pH decreases with plant age. These patterns and dynamics in leaf Eh-pH are in accordance with the pattern and dynamics of disease infections. Leaf Eh-pH can bring new insight on redox processes at plant level and is proposed as a novel indicator of plant stress/health. It could be used by agronomists, breeders, and pathologists to accelerate the development of crop cultivation methods leading to agroecological crop protection

    Iron biogeochemistry across marine systems progress from the past decade

    Get PDF
    Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Iron, silicate, and light co-limitation of three Southern Ocean diatom species

    Get PDF
    The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Get PDF
    Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development

    Biodiversity indicators in organic and conventional farming systems: main results from the European project BIOBIO

    Get PDF
    In the framework of the European project BIOBIO, we compared between countries habitat and cumulated species richnesses of plants, wild bees, spiders and earthworms, measured in 169 conventional and organic farms belonging to 10 case studies in 10 European countries. For the French case study (Gascony Valleys and Hills), correlations between direct (habitat and taxonomic richnesses) and indirect (agricultural practices) indicators of biodiversity within 8 conventional and 8 organic farms, were calculated. Results showed that the main driver of biodiversity at the farm level was the number of cultivated and above all semi-natural habitats, inthe French case study region as well as inthe other regions. This factor partially explained the highest biodiversity level of the French case study region. However, farming practices, specific or not to the organic and conventional systems, most often drove biodiversity parameters at the habitat level. In fine, the project proposed the BIOBIO method for monitoring biodiversity in farms

    Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.

    Get PDF
    Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained

    Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section

    Get PDF
    The aim of the GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) was to provide a better understanding of trace metal biogeochemical cycles in the North Atlantic Ocean. As marine particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe), in relation to the distribution of particulate aluminium (PAl), manganese (PMn), and phosphorus (PP). Overall, 32 full vertical profiles were collected for trace metal analyses, representing more than 500 samples. This resolution provides a solid basis for assessing concentration distributions, elemental ratios, size fractionation, and adsorptive scavenging processes in key areas of the thermohaline overturning circulation. Total particulate iron concentrations ranged from as low as 9&thinsp;pmol&thinsp;L−1 in surface waters of the Labrador Sea to 304&thinsp;nmol&thinsp;L−1 near the Iberian margin, while median PFe concentrations of 1.15&thinsp;nmol&thinsp;L−1 were measured over the sub-euphotic ocean interior. Within the Iberian Abyssal Plain, the ratio of PFe to PAl was identical to the continental crust molar ratio (0.21&thinsp;mol&thinsp;mol−1), indicating the important influence of crustal particles in the water column. Overall, the lithogenic component explained more than 87% of PFe variance along the section. Within the Irminger and Labrador basins, the formation of biogenic particles led to an increase in the PFe∕PAl ratio (up to 0.64&thinsp;mol&thinsp;mol−1) compared to the continental crust ratio. Continental margins induce high concentrations of particulate trace elements within the surrounding water masses (up to 10&thinsp;nmol&thinsp;L−1 of PFe). For example, horizontal advection of PFe was visible more than 250&thinsp;km away from the Iberian margin. Additionally, several benthic nepheloid layers were observed more than 200&thinsp;m above the seafloor along the transect, especially in the Icelandic, Irminger, and Labrador basins, suspending particles with high PFe content of up to 89&thinsp;nmol&thinsp;L−1.</p

    Atmospheric deposition fluxes over the Atlantic Ocean: a GEOTRACES case study

    Get PDF
    Atmospheric deposition is an important source of micronutrients to the ocean, but atmospheric deposition fluxes remain poorly constrained in most ocean regions due to the limited number of field observations of wet and dry atmospheric inputs. Here we present the distribution of dissolved aluminium (dAl), as a tracer of atmospheric inputs, in surface waters of the Atlantic Ocean along GEOTRACES sections GA01, GA06, GA08, and GA10. We used the surface mixed-layer concentrations of dAl to calculate atmospheric deposition fluxes using a simple steady state model. We have optimized the Al fractional aerosol solubility, the dAl residence time within the surface mixed layer and the depth of the surface mixed layer for each separate cruise to calculate the atmospheric deposition fluxes. We calculated the lowest deposition fluxes of 0.15±0.1 and 0.27±0.13&thinsp;g&thinsp;m−2&thinsp;yr−1 for the South and North Atlantic Ocean (&gt;40∘&thinsp;S and &gt;40∘&thinsp;N) respectively, and the highest fluxes of 1.8 and 3.09&thinsp;g&thinsp;m−2&thinsp;yr−1 for the south-east Atlantic and tropical Atlantic Ocean, respectively. Overall, our estimations are comparable to atmospheric dust deposition model estimates and reported field-based atmospheric deposition estimates. We note that our estimates diverge from atmospheric dust deposition model flux estimates in regions influenced by riverine Al inputs and in upwelling regions. As dAl is a key trace element in the GEOTRACES programme, the approach presented in this study allows calculations of atmospheric deposition fluxes at high spatial resolution for remote ocean regions.</p

    Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect

    Get PDF
    We report here the results of total mercury (HgT) determinations along the 2014 Geotraces Geovide cruise (GA01 transect) in the North Atlantic Ocean (NA) from Lisbon (Portugal) to the coast of Labrador (Canada). HgT concentrations in unfiltered samples (HgTUNF) were log-normally distributed and ranged between 0.16 and 1.54 pmol L−1, with a geometric mean of 0.51 pmol L−1 for the 535 samples analysed. The dissolved fraction (< 0.45 ”m) of HgT (HgTF), determined on 141 samples, averaged 78 % of the HgTUNF for the entire data set, 84 % for open seawaters (below 100 m) and 91 % if the Labrador Sea data are excluded, where the primary production was high (with a winter convection down to 1400 m). HgTUNF concentrations increased eastwards and with depth from Greenland to Europe and from subsurface to bottom waters. The HgTUNF concentrations were similarly low in the subpolar gyre waters (â€‰âˆŒâ€‰â€Ż0.45 pmol L−1), whereas they exceeded 0.60 pmol L−1 in the subtropical gyre waters. The HgTUNF distribution mirrored that of dissolved oxygen concentration, with highest concentration levels associated with oxygen-depleted zones. The relationship between HgTF and the apparent oxygen utilization confirms the nutrient-like behaviour of Hg in the NA. An extended optimum multiparameter analysis allowed us to characterize HgTUNF concentrations in the different source water types (SWTs) present along the transect. The distribution pattern of HgTUNF, modelled by the mixing of SWTs, show Hg enrichment in Mediterranean waters and North East Atlantic Deep Water and low concentrations in young waters formed in the subpolar gyre and Nordic seas. The change in anthropogenic Hg concentrations in the Labrador Sea Water during its eastward journey suggests a continuous decrease in Hg content in this water mass over the last decades. Calculation of the water transport driven by the Atlantic Meridional Overturning Circulation across the Portugal–Greenland transect indicates northward Hg transport within the upper limb and southward Hg transport within the lower limb, with resulting net northward transport of about 97.2 kmol yr−1
    • 

    corecore