159 research outputs found

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1

    Laboratory Evolution of Fast-Folding Green Fluorescent Protein Using Secretory Pathway Quality Control

    Get PDF
    Green fluorescent protein (GFP) has undergone a long history of optimization to become one of the most popular proteins in all of cell biology. It is thermally and chemically robust and produces a pronounced fluorescent phenotype when expressed in cells of all types. Recently, a superfolder GFP was engineered with increased resistance to denaturation and improved folding kinetics. Here we report that unlike other well-folded variants of GFP (e.g., GFPmut2), superfolder GFP was spared from elimination when targeted for secretion via the SecYEG translocase. This prompted us to hypothesize that the folding quality control inherent to this secretory pathway could be used as a platform for engineering similar ‘superfolded’ proteins. To test this, we targeted a combinatorial library of GFPmut2 variants to the SecYEG translocase and isolated several superfolded variants that accumulated in the cytoplasm due to their enhanced folding properties. Each of these GFP variants exhibited much faster folding kinetics than the parental GFPmut2 protein and one of these, designated superfast GFP, folded at a rate that even exceeded superfolder GFP. Remarkably, these GFP variants exhibited little to no loss in specific fluorescence activity relative to GFPmut2, suggesting that the process of superfolding can be accomplished without altering the proteins' normal function. Overall, we demonstrate that laboratory evolution combined with secretory pathway quality control enables sampling of largely unexplored amino-acid sequences for the discovery of artificial, high-performance proteins with properties that are unparalleled in their naturally occurring analogues

    How does the tobacco industry attempt to influence marketing regulations? A systematic review

    Get PDF
    BACKGROUND: The Framework Convention on Tobacco Control makes a number of recommendations aimed at restricting the marketing of tobacco products. Tobacco industry political activity has been identified as an obstacle to Parties' development and implementation of these provisions. This study systematically reviews the existing literature on tobacco industry efforts to influence marketing regulations and develops taxonomies of 1) industry strategies and tactics and 2) industry frames and arguments. METHODS: Searches were conducted between April-July 2011, and updated in March 2013. Articles were included if they made reference to tobacco industry efforts to influence marketing regulations; supported claims with verifiable evidence; were written in English; and concerned the period 1990-2013. 48 articles met the review criteria. Narrative synthesis was used to combine the evidence. RESULTS: 56% of articles focused on activity in North America, Europe or Australasia, the rest focusing on Asia (17%), South America, Africa or transnational activity. Six main political strategies and four main frames were identified. The tobacco industry frequently claims that the proposed policy will have negative unintended consequences, that there are legal barriers to regulation, and that the regulation is unnecessary because, for example, industry does not market to youth or adheres to a voluntary code. The industry primarily conveys these arguments through direct and indirect lobbying, the promotion of voluntary codes and alternative policies, and the formation of alliances with other industrial sectors. The majority of tactics and arguments were used in multiple jurisdictions. CONCLUSIONS: Tobacco industry political activity is far more diverse than suggested by existing taxonomies of corporate political activity. Tactics and arguments are repeated across jurisdictions, suggesting that the taxonomies of industry tactics and arguments developed in this paper are generalisable to multiple jurisdictions and can be used to predict industry activity

    The HAPPY (Healthy and Active Parenting Programmme for early Years) feasibility randomised control trial: acceptability and feasibility of an intervention to reduce infant obesity.

    Get PDF
    The prevalence of infant obesity is increasing, but there is a lack of evidence-based approaches to prevent obesity at this age. This study tested the acceptability and feasibility of evaluating a theory-based intervention aimed at reducing risk of obesity in infants of overweight/obese women during and after pregnancy: the Healthy and Active Parenting Programme for Early Years (HAPPY).A feasibility randomised controlled trial was conducted in Bradford, England. One hundred twenty overweight/obese pregnant women (Body Mass Index [BMI] ≥25 kg/m(2)) were recruited between 10-26 weeks gestation. Consenting women were randomly allocated to HAPPY (6 antenatal, 6 postnatal sessions: N = 59) or usual care (N = 61). Appropriate outcome measures for a full trial were explored, including: infant's length and weight, woman's BMI, physical activity and dietary intake of the women and infants. Health economic data were collected. Measurement occurred before randomisation and when the infant was aged 6 months and 12 months. Feasibility outcomes were: recruitment/attrition rates, and acceptability of: randomisation, measurement, and intervention. Intra-class correlations for infant weight were calculated. Fidelity was assessed through observations and facilitator feedback. Focus groups and semi-structured interviews explored acceptability of methods, implementation, and intervention content.Recruitment targets were met (~20 women/month) with a recruitment rate of 30 % of eligible women (120/396). There was 30 % attrition at 12 months; 66 % of recruited women failed to attend intervention sessions, but those who attended the first session were likely to continue to attend (mean 9.4/12 sessions, range 1-12). Reaction to intervention content was positive, and fidelity was high. Group clustering was minimal; an adjusted effect size of -0.25 standard deviation scores for infant weight at 12 months (95 % CI: -0.16-0.65) favouring the intervention was observed using intention to treat analyses. No adverse events were reported.The HAPPY intervention appeared feasible and acceptable to participants who attended and those delivering it, however attendance was low; adaptations to increase initial attendance are recommended. Whilst the study was not powered to detect a definitive effect, our results suggest a potential to reduce risk of infant obesity. The evidence reported provides valuable lessons to inform progression to a definitive trial.Current Controlled Trials ISRCTN56735429

    Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling

    Get PDF
    Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity

    Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization

    Get PDF
    Renal cell carcinoma (RCC) are frequently chemo- and radiation resistant. Thus, there is a need for identifying biological features of these cells that could serve as alternative therapeutic targets. We performed suppression subtractive hybridization (SSH) on patient-matched normal renal and RCC tissue to identify variably regulated genes. 11 genes were strongly up-regulated or selectively expressed in more than one RCC tissue or cell line. Screening of filters containing cancer-related cDNAs confirmed overexpression of 3 of these genes and 3 additional genes were identified. These 14 differentially expressed genes, only 6 of which have previously been associated with RCC, are related to tumour growth/survival (EGFR, cyclin D1, insulin-like growth factor-binding protein-1 and a MLRQ sub-unit homologue of the NADH:ubiquinone oxidoreductase complex), angiogenesis (vascular endothelial growth factor, endothelial PAS domain protein-1, ceruloplasmin, angiopoietin-related protein 2) and cell adhesion/motility (protocadherin 2, cadherin 6, autotaxin, vimentin, lysyl oxidase and semaphorin G). Since some of these genes were overexpressed in 80–90% of RCC tissues, it is important to evaluate their suitability as therapeutic targets. © 2001 Cancer Research Campaig
    corecore