44 research outputs found

    What about the herb? A new metabolomics approach for synthetic cannabinoid drug testing

    Get PDF
    Synthetic cannabinoids (SCs) are consumed as legal alternative to cannabis and often allow passing drug-screening tests. Their rapid transience on the drug scene, combined with their mostly unknown metabolic profiles, creates a scenario with constantly moving analytical targets, making their monitoring and identification challenging. The development of fast screening strategies for SCs, not directly focused on their chemical structure, as an alternative to the commonly applied target acquisition methods, would be highly appreciated in forensic and public health laboratories. An innovative untargeted metabolomics approach, focused on herbal components commonly used for ‘spice’ products, was applied. Saliva samples of healthy volunteers were collected at pre-dose and after smoking herbal components and analysed by high-resolution mass spectrometry. The data obtained, combined with appropriate statistical analysis, allowed to highlight and elucidate two markers (scopoletin and N,N-bis(2-hydroxyethyl)dodecylamine), which ratio permitted to differentiate herbal smokers from non-smokers. The proposed strategy will allow discriminating potential positives, on the basis of the analysis of two markers identified in the herbal blends. This work is presented as a step forward in SC drug testing, promoting a smart first-line screening approach, which will allow reducing the number of samples to be further investigated by more sophisticated HRMS methods

    Contributions of MS metabolomics to gilthead sea bream (Sparus aurata) nutrition. Serum fingerprinting of fish fed low fish meal and fish oil diets

    Get PDF
    The aim of this study was to evaluate the impact of fish meal (FM) and fish oil (FO) replacement by plant proteins and oils in the serum metabolome of two-year old gilthead sea bream (Sparus aurata) fed from early life stages with control and experimental diets. Randomly selected fish were overnight sampled and clotted serum was used for metabolomics fingerprinting by means of ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. >12,500 different m/z ions were detected, and Partial Least Squares-Discriminant analysis separated fish fed control and plant-based diets, with a 71% of variance explained and 44% of variance predicted by the two first components. After variable importance in projection (VIP) and Benjamini-Hochberg test correction filtering, 50 endogenous compounds were elucidated as highly discriminant features of dietary treatment. Most of them were lipid-related compounds and reflected the different fatty acid composition of dietary oils, whereas changes in N-acyl taurines, cytidine and nucleoside related compounds would indicate changes in tissue repair and DNA degradation processes. Untargeted analysis also identified some exogenous compounds as markers of marine and vegetable raw materials. In the case of hercynine (antioxidant fungi and mycobacteria product), this was exemplified by a close lineal association between circulating and feed levels. Targeted approaches were focused on vitamins and a clear reduction of B12, indirectly assessed via methylmalonic acid levels, was found in fish fed vegetable diets. Conversely, serum riboflavin (B2) and pantothenic acid (B5) levels were consistently increased, which highlighted the close link between nutrition and gut microbiota

    A comprehensive study on diesel oil bioremediation under microcosm conditions using a combined microbiological, enzymatic, mass spectrometry, and metabarcoding approach

    Get PDF
    This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.This research was financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant #2016/07957-7) and by Conselho Nacional de Desenvolvimento Tecnológico (CNPq) (grant #407986/2018-6).Peer reviewe

    Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors

    Get PDF
    Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution

    Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors

    Get PDF
    Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution

    The Shear Stress-Induced Transcription Factor KLF2 Affects Dynamics and Angiopoietin-2 Content of Weibel-Palade Bodies

    Get PDF
    BACKGROUND: The shear-stress induced transcription factor KLF2 has been shown to induce an atheroprotective phenotype in endothelial cells (EC) that are exposed to prolonged laminar shear. In this study we characterized the effect of the shear stress-induced transcription factor KLF2 on regulation and composition of Weibel-Palade bodies (WPBs) using peripheral blood derived ECs. METHODOLOGY AND PRINCIPAL FINDINGS: Lentiviral expression of KLF2 resulted in a 4.5 fold increase in the number of WPBs per cell when compared to mock-transduced endothelial cells. Unexpectedly, the average length of WPBs was significantly reduced: in mock-transduced endothelial cells WPBs had an average length of 1.7 µm versus 1.3 µm in KLF2 expressing cells. Expression of KLF2 abolished the perinuclear clustering of WPBs observed following stimulation with cAMP-raising agonists such as epinephrine. Immunocytochemistry revealed that WPBs of KLF2 expressing ECs were positive for IL-6 and IL-8 (after their upregulation with IL-1β) but lacked angiopoietin-2 (Ang2), a regular component of WPBs. Stimulus-induced secretion of Ang2 in KLF2 expressing ECs was greatly reduced and IL-8 secretion was significantly lower. CONCLUSIONS AND SIGNIFICANCE: These data suggest that KLF2 expression leads to a change in size and composition of the regulated secretory compartment of endothelial cells and alters its response to physiological stimuli

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore