113 research outputs found

    The earliest dipodomyine heteromyid in North America and the phylogenetic relationships of geomorph rodents

    Get PDF
    Dipodomyine heteromyids (kangaroo rats and mice) are a diverse group of aridadapted ricochetal rodents of North America. Here, a new genus and species of a large dipodomyine is reported from early Miocene-aged deposits of the John Day Formation in Oregon that represents the earliest record of the subfamily. The taxon is known from a single specimen consisting of a nearly complete skull, dentary, partial pes, and caudal vertebra. The specimen is characterized by a mosaic of ancestral and highly derived cranial features of heteromyids. Specifically, the dental morphology and some cranial characteristics are similar to early heteromyids, but other aspects of morphology, including the exceptionally inflated auditory bullae, are more similar to known dipodomyines. This specimen was included in a phylogenetic analysis comprising 96 characters and the broadest sampling of living and extinct geomorph rodents of any morphological phylogenetic analysis to date. Results support the monophyly of crown-group Heteromyidae exclusive of Geomyidae and place the new taxon within Dipodomyinae. The new heteromyid is the largest known member of the family. Analyses suggest that large body size evolved several times within Heteromyidae. Overall, the morphology of the new heteromyid supports a mosaic evolution of the open-habitat adaptations that characterize kangaroo rats and mice, with the inflation of the auditory bulla appearing early in the group, and bipedality/ricochetal locomotion appearing later. We hypothesize that cooling and drying conditions in the late Oligocene and early Miocene favored adaptations for life in more open habitats, resulting in increased locomotor specialization in this lineage over time from a terrestrial ancestor

    Universal heteroplasmy of human mitochondrial DNA.

    Get PDF
    Mammalian cells contain thousands of copies of mitochondrial DNA (mtDNA). At birth, these are thought to be identical in most humans. Here, we use long read length ultra-deep resequencing-by-synthesis to interrogate regions of the mtDNA genome from related and unrelated individuals at unprecedented resolution. We show that very low-level heteroplasmic variance is present in all tested healthy individuals, and is likely to be due to both inherited and somatic single base substitutions. Using this approach, we demonstrate an increase in mtDNA mutations in the skeletal muscle of patients with a proofreading-deficient mtDNA polymerase γ due to POLG mutations. In contrast, we show that OPA1 mutations, which indirectly affect mtDNA maintenance, do not increase point mutation load. The demonstration of universal mtDNA heteroplasmy has fundamental implications for our understanding of mtDNA inheritance and evolution. Ostensibly de novo somatic mtDNA mutations, seen in mtDNA maintenance disorders and neurodegenerative disease and aging, will partly be due to the clonal expansion of low-level inherited variants

    Non-Random mtDNA Segregation Patterns Indicate a Metastable Heteroplasmic Segregation Unit in m.3243A>G Cybrid Cells

    Get PDF
    Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases

    MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer

    Get PDF
    MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment

    Guiding principles for determining work shift duration and addressing the effects of work shift duration on performance, safety, and health

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1093/sleep/zsab161Risks associated with fatigue that accumulates during work shifts have historically been managed through working time arrangements that specify fixed maximum durations of work shifts and minimum durations of time off. By themselves, such arrangements are not sufficient to curb risks to performance, safety, and health caused by misalignment between work schedules and the biological regulation of waking alertness and sleep. Science-based approaches for determining shift duration and mitigating associated risks, while addressing operational needs, require: 1) a recognition of the factors contributing to fatigue and fatigue-related risks; 2) an understanding of evidence-based countermeasures that may reduce fatigue and/or fatigue-related risks; and 3) an informed approach to selecting workplace-specific strategies for managing work hours. We propose a series of guiding principles to assist stakeholders with designing a shift duration decision-making process that effectively balances the need to meet operational demands with the need to manage fatigue-related risks.Academy of Sleep Medicine (AASM)Sleep Research Societ

    Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD): study protocol for establishing a core outcome set in polycystic kidney disease

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life threatening inherited kidney disease and is responsible for 5-10% of cases of end-stage kidney disease (ESKD). Cystic kidneys may enlarge up to 20 times the weight of a normal kidney due to the growth of renal cysts, and patients with ADPKD have an increased risk of morbidity, premature mortality, and other life-time complications including renal and hepatic cyst and urinary tract infection, intracranial aneurysm, diverticulosis, and kidney pain which impair quality of life. Despite some therapeutic advances and the growing number of clinical trials in ADPKD, the outcomes that are relevant to patients and clinicians, such as symptoms and quality of life, are infrequently and inconsistently reported. This potentially limits the contribution of trials to inform evidence-based decision-making. The Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) project aims to establish a consensus-based set of core outcomes for trials in PKD (with an initial focus on ADPKD but inclusive of all stages) that patients and health professionals identify as critically important. METHODS: The five phases of SONG-PKD are: a systematic review to identify outcomes that have been reported in existing PKD trials; focus groups with nominal group technique with patients and caregivers to identify, rank, and describe reasons for their choices; qualitative stakeholder interviews with health professionals to elicit individual values and perspectives on outcomes for trials involving patients with PKD; an international three-round Delphi survey with all stakeholder groups (including patients, caregivers, healthcare providers, policy makers, researchers, and industry) to gain consensus on critically important core outcome domains; and a consensus workshop to review and establish a set of core outcome domains and measures for trials in PKD. DISCUSSION: The SONG-PKD core outcome set is aimed at improving the consistency and completeness of outcome reporting across ADPKD trials, leading to improvements in the reliability and relevance of trial-based evidence to inform decisions about treatment and ultimately improve the care and outcomes for people with ADPKD

    Recent Engagements with Adam Smith and the Scottish Enlightenment

    Full text link

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
    corecore