125 research outputs found

    Gas Physics, Disk Fragmentation, and Bulge Formation in Young Galaxies

    Full text link
    We investigate the evolution of star-forming gas-rich disks, using a 3D chemodynamical model including a dark halo, stars, and a two-phase interstellar medium with feedback processes from the stars. We show that galaxy evolution proceeds along very different routes depending on whether it is the gas disk or the stellar disk which first becomes unstable, as measured by the respective Q-parameters. This in turn depends on the uncertain efficiency of energy dissipation of the cold cloud component from which stars form. When the cold gas cools efficiently and drives the instability, the galactic disk fragments and forms a number of massive clumps of stars and gas. The clumps spiral to the center of the galaxy in a few dynamical times and merge there to form a central bulge component in a strong starburst. When the kinetic energy of the cold clouds is dissipated at a lower rate, stars form from the gas in a more quiescent mode, and an instability only sets in at later times, when the surface density of the stellar disk has grown sufficiently high. The system then forms a stellar bar, which channels gas into the center, evolves, and forms a bulge whose stars are the result of a more extended star formation history. We investigate the stability of the gas-stellar disks in both regimes, as well as the star formation rates and element enrichment. We study the morphology of the evolving disks, calculating spatially resolved colours from the distribution of stars in age and metallicity, including dust absorption. We then discuss morphological observations such as clumpy structures and chain galaxies at high redshift as possible signatures of fragmenting, gas-rich disks. Finally, we investigate abundance ratio distributions as a means to distinguish the different scenarios for bulge formation.Comment: 16 pages, Latex, 14 figures, to appear in Astronomy and Astrophysics, Version with high quality images available at http://www.astro.unibas.ch/leute/ai.shtm

    The Formation of a Disk Galaxy within a Growing Dark Halo

    Full text link
    We present a dynamical model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. The simulations start at redshift z=4.85 with a small dark halo in a LCDM universe and we follow the evolution until the present epoch. The energy release by massive stars and SNe prevents a rapid collapse of the baryonic matter and delays the maximum star formation until z=1. The galaxy forms radially from inside-out and vertically from halo to disk. The first galactic component that forms is the halo, followed by the bulge, the disk-halo transition region, and the disk. At z=1, a bar begins to form which later turns into a triaxial bulge. There is a pronounced deficiency of low-metallicity disk stars due to pre-enrichment of the disk ISM with metal-rich gas from the bulge and inner disk (G-dwarf problem). The mean rotation and the distribution of orbital eccentricities for all stars as a function of metallicity are not very different from those observed in the solar neighbourhood, showing that homogeneous collapse models are oversimplified. The approach presented here provides a detailed description of the formation and evolution of an isolated disk galaxy in a LCDM universe, yielding new information about the kinematical and chemical history of the stars and the ISM, but also about the evolution of the luminosity, the colours and the morphology of disk galaxies.Comment: 23 pages, LaTeX, 18 figures, A&A accepted, a high resolution version of the paper can be found at http://www.astro.unibas.ch/leute/ms.shtm

    Exoplanet Imaging Data Challenge, phase II: Characterization of exoplanet signals in high-contrast images

    Full text link
    Today, there exists a wide variety of algorithms dedicated to high-contrast imaging, especially for the detection and characterisation of exoplanet signals. These algorithms are tailored to address the very high contrast between the exoplanet signal(s), which can be more than two orders of magnitude fainter than the bright starlight residuals in coronagraphic images. The starlight residuals are inhomogeneously distributed and follow various timescales that depend on the observing conditions and on the target star brightness. Disentangling the exoplanet signals within the starlight residuals is therefore challenging, and new post-processing algorithms are striving to achieve more accurate astrophysical results. The Exoplanet Imaging Data Challenge is a community-wide effort to develop, compare and evaluate algorithms using a set of benchmark high-contrast imaging datasets. After a first phase ran in 2020 and focused on the detection capabilities of existing algorithms, the focus of this ongoing second phase is to compare the characterisation capabilities of state-of-the-art techniques. The characterisation of planetary companions is two-fold: the astrometry (estimated position with respect to the host star) and spectrophotometry (estimated contrast with respect to the host star, as a function of wavelength). The goal of this second phase is to offer a platform for the community to benchmark techniques in a fair, homogeneous and robust way, and to foster collaborations.Comment: Submitted to SPIE Astronomical Telescopes + Instrumentation 2022, Adaptive Optics Systems VIII, Paper 12185-

    Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants

    Full text link
    We obtained FLAMES-GIRAFFE spectra (R=22,500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b=-4, b=-6, b=-12. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b=-3 and 5 degrees away from the other three fields along the major axis. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b=-4 disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H]<-0.2) show a remarkable homogeneity at different bulge locations. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.Comment: 13 pages, 17 figures. Accepted for publication in Astronomy and Astrophysic

    Colour Evolution of Disk Galaxy Models from z=4 to z=0

    Get PDF
    We calculate synthetic UBVRIJHKLM images, integrated spectra and colours for the disk galaxy formation models of Samland & Gerhard (2002), from redshift z=4 to z=0. Two models are considered, an accretion model based on LambdaCDM structure formation simulations, and a classical collapse model in a dark matter halo. Both models provide the star formation history and dynamics of the baryonic component within a three-dimensional chemo-dynamical description. To convert to spectra and colours, we use the latest, metallicity-calibrated spectral library of Westera et al. (2002), including internal absorption. As a first application, we compare the derived colours with Hubble Deep Field North bulge colours and find good agreement. With our model, we disentangle metallicity effects and absorption effects on the integrated colours, and find that absorption effects are dominant for redshift z < 1.5. Furthermore, we confirm the quality of m_K as a mass tracer, and find indications for a correlation between (J-K) and metallicity gradients.Comment: 29 pages, LaTeX, 17 figures, revised version, submitted to A&A, a high resolution version can be found at http://www.astro.unibas.ch/leute/ms.shtm

    Implications of O and Mg abundances in metal-poor halo stars for stellar iron yields

    Get PDF
    Inhomogeneous chemical evolution models of galaxies which try to reproduce the scatter seen in element-to-iron ratios of metal-poor halo stars are heavily dependent on theoretical nucleosynthesis yields of core-collapse supernovae. Hence inhomogeneous models present themselves as a test for stellar nucleosyn- thesis calculations. Applying an inhomogeneous chemical evolution model to our Galaxy reveals a number of shortcomings of existing theoretical nucleosynthesis yields. One problem is the predicted scatter in [O/Fe] and [Mg/Fe] which is too large compared to the one observed in metal-poor halo stars. This can be either due to the O or Mg yields or due to the Fe yields (or both). However, O and Mg are alpha-elements that are produced mainly during hydrostatic burning and thus are not affected by the theoretical uncertainties afflicting the collapse and explosion of a massive star. Stellar iron yields, on the other hand, depend heavily on the choice of the mass-cut between ejecta and proto neutron star and are therefore very uncertain. We present Fe yield distributions as function of progenitor mass that are consistent with the abundance distribution of metal- poor halo stars and are in agreement with observed Ni yields of SNe II with known progenitor masses. The iron yields of lower-mass SNe II (in the range 10-20 Msol) are well constrained by those observations. Present observations, however, do not allow to determine a unique solution for higher-mass SNe. Nevertheless, the main dependence of the stellar iron yield as function of progenitor mass may be derived and can be used as constraint for future supernova/hypernova models. The results are of importance for the earliest stages of galaxy formation when the ISM is dominated by chemical inhomogeneities and the instantaneous mixing approximation is not valid.Comment: 16 pages, 15 figures, submitted to A&A, for higher quality figures contact the author ([email protected]

    An imaged 15Mjup companion within a hierarchical quadruple system

    Get PDF
    Since 2019, the direct imaging B-star Exoplanet Abundance Study (BEAST) at SPHERE@VLT has been scanning the surroundings of young B-type stars in order to ascertain the ultimate frontiers of giant planet formation. Recently, the 174+317^{+3}_{-4} Myr HIP 81208 was found to host a close-in (~50 au) brown dwarf and a wider (~230 au) late M star around the central 2.6Msun primary. Alongside the continuation of the survey, we are undertaking a complete reanalysis of archival data aimed at improving detection performances so as to uncover additional low-mass companions. We present here a new reduction of the observations of HIP 81208 using PACO ASDI, a recent and powerful algorithm dedicated to processing high-contrast imaging datasets, as well as more classical algorithms and a dedicated PSF-subtraction approach. The combination of different techniques allowed for a reliable extraction of astrometric and photometric parameters. A previously undetected source was recovered at a short separation from the C component of the system. Proper motion analysis provided robust evidence for the gravitational bond of the object to HIP 81208 C. Orbiting C at a distance of ~20 au, this 15Mjup brown dwarf becomes the fourth object of the hierarchical HIP 81208 system. Among the several BEAST stars which are being found to host substellar companions, HIP 81208 stands out as a particularly striking system. As the first stellar binary system with substellar companions around each component ever found by direct imaging, it yields exquisite opportunities for thorough formation and dynamical follow-up studies.Comment: 12 pages, 9 figures, 5 tables. Accepted for publication as a Letter in Astronomy and Astrophysics, section 1. Letters to the Edito

    Stellar populations of bulges at low redshift

    Full text link
    This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 34 pages, 12 figure

    Post conjunction detection of β\beta Pictoris b with VLT/SPHERE

    Get PDF
    With an orbital distance comparable to that of Saturn in the solar system, \bpic b is the closest (semi-major axis \simeq\,9\,au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to \bpic have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. We aimed at further constraining \bpic b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. We used SPHERE at the VLT to precisely monitor the orbital motion of beta \bpic b since first light of the instrument in 2014. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b on the northeast side of the disk at a separation of 139\,mas and a PA of 30^{\circ} in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a=9.0±0.5a = 9.0 \pm 0.5 au (1 σ\sigma ), it definitely excludes previously reported possible long orbital periods, and excludes \bpic b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.Comment: accepted by A&
    corecore