28 research outputs found

    Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies

    Get PDF
    The soil structure of paddy soil is very dynamic from the aggregate to the pedon scale because of intensive anthropogenic management strategies. In this study, we tested the hypothesis that long-term inorganic and organic fertilizations can affect soil structure at different scales. Microstructure assessed by soil aggregates (3–5 mm in diameter) and macrostructure assessed by small soil cores (CoreS) (5 cm in diameter, 5 cm in height) and large soil cores (CoreL) (10 cm in diameter, 10 cm in height) were sampled from three long-term fertilization treatments, including no fertilizer (CK), application of inorganic fertilizer (NPK), and a combination of inorganic fertilizer and organic manure (NPKOM), established in 1982. They were scanned at two scales with two types of micro-computed tomography (micro-CT) and quantified using image analysis. Results showed that relative to CK treatment, long-term NPKOM fertilization increased soil organic C (SOC) by 28% and available water content (AWC) by 20%, but decreased soil bulk density by 0.2 g cm− 3 whereas NPK showed no difference. Soils under CK and NPK treatments exhibited an identical dense structure at both aggregate and core scales in which pores were mainly cracks resulting from shrink/swell processes, and showed no significant difference in porosity and size distribution of the CT-identified pores (> 3.7 μm). Compared with the CK treatment, the soil in the NPKOM treatment had greater intra- and inter-aggregate pores, and increased porosity by 58.3%, 144.9%, and 65.9% at aggregate, CoreS, and CoreL scales, respectively. These were attributed to the biopores formed from decayed roots, stubble, and organic manures as a result of increased yields and direct amendment of organic manure. Overall, this study demonstrates that organic fertilization can improve the physical qualities of paddy soils across different scales but inorganic fertilization in isolation does not

    Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry

    Get PDF
    Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1,2,3,4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being, addressing the global biodiversity crisis still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF) and the UN Sustainable Development Goals, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change, pandemic emergence and socio-environmental injustices. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Peroxisomes and bile acid biosynthesis

    Get PDF
    Peroxisomes play an important role in the biosynthesis of bile acids because a peroxisomal beta-oxidation step is required for the formation of the mature C24-bile acids from C27-bile acid intermediates. In addition, de novo synthesized bile acids are conjugated within the peroxisome. In this review, we describe the current state of knowledge about all aspects of peroxisomal function in bile acid biosynthesis in health and disease. The peroxisomal enzymes involved in the synthesis of bile acids have been identified, and the metabolic and pathologic consequences of a deficiency of one of these enzymes are discussed, including the potential role of nuclear receptors therei
    corecore